

global environmental solutions

Stage 2 Detailed Site Investigation Proposed Residential Aged Care Facilities 13 Booralla Road, Edensor Park NSW

Report Number 610.15583-R3

7 July 2016

Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust PO Box 1419 Double Bay NSW 1360

Version: Revision 0

Stage 2 Detailed Site Investigation Proposed Residential Aged Care Facilities

13 Booralla Road, Edensor Park NSW

PREPARED BY:

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) T: +61 2 9427 8100 F: +61 2 9427 8200 sydney@slrconsulting.com www.slrconsulting.com

> This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Status	Date	Prepared	Checked	Authorised
610.15583-R3	Revision 0	7 July 2016	Abanish Nepal	Nalin De Silva	pp=
610.15583-R3D1	Draft 1	4 July 2016	Abanish Nepal	Nalin De Silva	Nalin De Silva

Executive Summary

SLR Consulting Pty Ltd (SLR) was engaged by Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust (the Client) to prepare a Stage 2 Detailed Site Investigation (DSI) for 19-25 Booralla Road, Edensor Park, New South Wales (NSW) (the site).

The assessment was undertaken in accordance with SLR's offer of services dated 20 May 2016 (ref: 610.15583 Offer of Services 20160330.docx).

SLR had previously prepared a Stage 1 Preliminary Site Investigation (PSI) to assess the potential for contamination to be present at the site and the suitability of the site for the proposed residential aged care facilities. The Stage 1 PSI report (SLR, 2016) concluded that there was a low potential for contamination to be present on the site, and that the site can be made suitable for the proposed development, subject to the undertaking of a stage 2 DSI and associated remedial works (if warranted).

SLR understands that the development will include construction of two – two storey buildings with one level of basement and lower ground floor levels. Excavation of up to 7 metre (m) soil and rock is expected as part of basement construction.

A Stage 2 DSI is required to satisfy the Council's approval condition.

The objectives of this project were to:

- Make an assessment of the contamination status of areas of environment concern (AEC) identified by the Stage 1 PSI (SLR, 2016) report;
- Provide advice on the suitability of the land (with respect to contamination) for the proposed residential aged care facilities;
- Provide recommendations on further investigations or remediation/management of identified contamination (if required).

SLR undertook the following scope of work to address the project objectives:

- review of the Stage 1 PSI (SLR, 2016) report;
- preparation of a sampling, analytical and quality plan (SAQP) (SLR, 2016A);
- excavation of 25 test pits to depths ranging between 0.5 metre (m) to 0.9m below ground level (bgl);
- logging soil observations made during borehole drilling;
- headspace screening of soil samples for the presence of ionisable volatile organic compounds (VOC);
- collection of soil samples at appropriate depth and laboratory analysis of selected soil samples for a range of contaminants of concern; and
- data assessment and preparation of this stage 2 DSI report.

Based on a review of information presented in the Stage 1 PSI (SLR, 2016), observations made during fieldwork, results of laboratory analysis and the proposed redevelopment of the site, SLR concludes that:

Potential for the site soils to contain significant, widespread contamination is low to negligible.
 SLR considers that the contamination status of the soils are unlikely to pose an unacceptable risk to human health, in the context of the proposed residential land use;

Executive Summary

• SLR considers that the site is suitable for the proposed residential land use, subject to the following recommendations being addressed at the construction phase.

SLR recommends that the following be conducted prior to site clearing works, to minimise potential pose a contamination risk to construction workers and site users:

- The removal of fragments of fibrous cement sheeting observed along the site surface along the boundaries; and
- The removal of asbestos impacted surficial soils at TP20 (on a 5m radius around the location of TP20, to a depth of 200mm).

The above works should be conducted by appropriately licensed asbestos contractors, under the supervision of a qualified environmental consultant. Asbestos clearance certificates should be issued by a qualified occupational hygienist for areas where asbestos or asbestos impacted soils have been removed, prior to the commencement of site clearance or bulk excavation works.

This report must be read in conjunction with the limitations set out in Section 13.

Table of Contents

1	INTF	RODUCT	TION	1
	1.1	Backg	round	1
	1.2	Object	lives	1
	1.3	Scope	of Works	1
2	SITE		IFICATION	3
3	SITE	SETTI	NG	4
	3.1	Geolog	ду	4
	3.2	Lands	cape	4
	3.3	Topog	raphy	4
	3.4	Hydrog	geology	4
	3.5	Acid S	ulfate Soils	5
4	PRE	VIOUS	CONTAMINATION ASSESSMENTS	6
5	CON	ICEPTU	AL SITE MODEL	7
	5.1	Areas	of Environmental Concern and Contaminants of Potential Concern	7
	5.2	Recep	tors and Pathways	7
		5.2.1	Proposed Land Use Scenario	7
			Human Health – Direct Contact	7
			Human Health – Inhalation	7
		5.2.4	Ecological – Terrestrial	7
6	DAT	A QUAL	ITY OBJECTIVES	9
	6.1	-	ed Investigation Levels	9
		6.1.1	Human Health - Direct Contact	9
		6.1.2	Human Health – Asbestos	9
7	FIEL	.DWOR	(SUMMARY	11
	7.1	Servic	e Clearance	11
	7.2	Test P	its Excavation	11
	7.3	Soil Sa	ampling	12
8	RES	ULTS		14
	8.1	Sub-S	urface Conditions	14
		8.1.1	Lithology	14
		8.1.2	VOC monitoring and Odours	14
		8.1.3	Staining	14
	• -	8.1.4	Asbestos Containing Materials	14
	8.2	Labora	atory Results	14

Table of Contents

9	QUA	LITY AS	SSURANCE / QUALITY CONTROL	16
	9.1	Fieldw	vork	16
		9.1.1	Soil Sampling	16
		9.1.2	Sample Identification, Storage and Transport	16
		9.1.3	Field Duplicates	17
		9.1.4	Trip Blanks and Trip Spikes	17
		9.1.5	Rinsate Blanks	17
		9.1.6	Calibration	17
	9.2	Labora	atory	17
	9.3	Data C	Quality Indicators	18
10	DISC	USSIO	Ν	21
	10.1	Presei	nce of Contaminants	21
		10.1.1	Contaminants in Soil	21
	10.2	Risk to	o Human Health	21
		10.2.1	Contaminants in Soil	21
	10.3	Site S	uitability	22
11	CON	CLUSIC	ONS AND RECOMMENDATIONS	23
12	REFI	ERENC	ES	24
13	B LIMITATIONS			25

TABLES IN TEXT

Table 1	Areas of Environmental Concern and Contaminants of Potential Concern	7
Table 2	Health Screening Levels for asbestos contamination in soil	9
Table 3	Soil Drilling Works Summary	11
Table 4	Data Quality Indicator Assessment Results	18

TABLES

Table LR1	Soil Analysis
Table LR2	RPD Table
Table LR3	TB/TS Table

FIGURES

Figure 1	Site Locality
Figure 2	Site Layout
Figure 3	Test Pit Locations

APPENDICES

Appendix ACopies of the Proposed Development PlansAppendix BSAQP

Table of Contents

- Appendix C Test Pit Logs
- Appendix D Laboratory Certificates
- Appendix E PID Calibration Log

1 INTRODUCTION

SLR Consulting Pty Ltd (SLR) was engaged by Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust (the Client) to prepare a Stage 2 Detailed Site Investigation (DSI) for 19-25 Booralla Road, Edensor Park, New South Wales (NSW) (the site).

The assessment was undertaken in accordance with SLR's offer of services dated 20 May 2016 (ref: 610.15583 Offer of Services 20160330.docx).

1.1 Background

SLR had previously prepared a Stage 1 Preliminary Site Investigation (PSI) to assess the potential for contamination to be present at the site and the suitability of the site for the proposed residential aged care facilities. A Stage 1 PSI report (SLR, 2016¹) concluded that the potential to contain unacceptable soil contamination is low, and that the site can be made suitable for the proposed development, subject to the undertaking of a stage 2 DSI, and associated remedial works (if warranted).

SLR understands that the Client is proposing to undertake the proposed development work over two stages which will include construction of two – two storey buildings with one level of basement and lower ground floor levels. Excavation of up to 7 metre (m) soil and rock is expected as part of basement construction.

A Stage 2 DSI is required to satisfy the development consent conditions.

1.2 Objectives

The objectives of this project were to:

- Make an assessment of the contamination status of areas of environment concern (AEC) identified by the Stage 1 PSI (SLR 2016) report;
- Provide advice on the suitability of the land (with respect to contamination) for the proposed residential aged care facilities;
- Provide recommendations on further investigations or remediation/management of identified contamination (if required).

1.3 Scope of Works

SLR undertook the following scope of work to address the project objectives:

- Review of the Stage 1 PSI (SLR, 2016) report;
- Preparation of a sampling, analytical and quality plan (SAQP) (SLR, 2016A²);
- Excavation of 25 test pits to depths ranging between 0.5 metre (m) to 0.9m below ground level (bgl);
- Logging soil observations made during borehole drilling;
- Headspace screening of soil samples for the presence of ionisable volatile organic compounds (VOC);
- Collection of soil samples at appropriate depth intervals, or where there were signs of contamination, or the evidence of high volatile organic compounds;

¹ SLR 2016, 'Stage 1 Preliminary Site Investigation, Residential Aged Care Facilities, 19-25 Booralla Road, Edensor Park NSW', Report Number: 610.15583-R1 dated 11 February 2016, Version: Revision 1.

² SLR 2016A, 'Sampling, Analytical and Quality Plan, Proposed Stage 2 Detailed Site Investigation, 19-25 Booralla Road, Edensor Park', dated 3 June 2016, report number: 610.15583-R2, version: Revision 0

- Laboratory analysis of selected soil samples for:
 - Total Recoverable Hydrocarbons (TRH);
 - Benzene, Toluene Ethylbenzene and Xylene (BTEX);
 - Polycyclic Aromatic Hydrocarbon;
 - Metals;
 - Organochlorine Pesticides (OPP);
 - Organophosphorus Pesticides (OPP);
 - Polychlorinated Biphenyls (PCB);
 - Cation Exchange Capacity;
 - % Clay Content;
 - pH; and
 - Asbestos
- Data assessment and preparation of this stage 2 DSI report.

2 SITE IDENTIFICATION

The locality of the site is presented in Figure 1.

The site is legally identified as Lot 2 in DP 833184.

The site is irregular in shape and occupies an approximate area of 1.5 hectares (ha).

A site layout plan is presented in Figure 2.

3 SITE SETTING

3.1 Geology

The Geological Survey of NSW Penrith 1:100,000 Geological Series Sheet 9030 Edition I (1991) indicates that the site is located within Triassic period Wianamatta group lithology known as "Bringelly Shale". The lithology of this group of shale consists of shale, carbonaceous claystone, claystone, laminite, fine to medium-grained lithic sandstone, rare coal and tuff.

3.2 Landscape

Reference to the Soil Conservation Service of NSW Penrith 1:100,000 Soil Landscape Series Sheet 9030 indicates that the site is located within the close vicinity of three landscape groups of soils:

- Luddenham group of soils (lu);
- Blacktown group of soils (bt); and
- South Creek group of soils (sc).

The Luddenham group landscape typically comprises of undulating to rolling low hills on Wianamatta Group of shales, often associated with Minchinbury Sandstone. Local relief 50-80m, slopes 5-20%, narrow ridges, hillcrest and valleys.

The Blacktown group landscape typically comprises of gently undulating rises on Wianamatta Group shales and Hawkesbury shale. Local relief to 30m, slopes are usually <5%, broad rounded crests and ridges with gently inclined slopes.

The South Creek group landscape typically comprises of floodplains, valleys flats and drainage depressions of the channels on the Cumberland Plain.

3.3 Topography

Reference to the Soil Conservation Service of NSW Penrith 1:100,000 Soil Landscape Series Sheet 9030 indicates that the topography of the site is likely to consist of flat to gently sloping alluvial plain with occasional terraces to gently undulating rises on Wianamatta Shale, slopes between <5 to 20% and local relief between <10m to 80m.

Elevation profile on the Google Earth indicated that the topography of the site is sloping gently towards south and southwest with approximately 5m drop in elevation. The northern and northern eastern portions of the site had elevations of 54 and 56 m Australian Height Datum (AHD) while the southern and southwestern portions of the site had elevations of 49 to 50m AHD. Locally, the site is located on a slight crest, with elevation decreasing both to the north and the south. There is a local relief to the west.

3.4 Hydrogeology

The nearest surface water body is Orphan School Creek located approximately 700m to the north and northeast of the site. Clear Paddock Creek is located approximately 800m to the south. Both these creeks flow east prior to merging and flowing into Prospect Creek, which then flows into the Chipping Norton Lake located approximately 7 kilometres (km) from the site.

Based on the topography surrounding the site, the location of the nearest surface water body and the flow direction of the nearest surface water body, it is considered that the surface water flow and the groundwater flow at the site is likely to be towards the south or south east, though being situated on a crest creates difficulty in assessing the direction of flow of water.

A search of the NSW Department of Primary Industries – Office of Water Groundwater Map (<u>http://waterinfo.nsw.gov.au/gw/</u>) conducted on 13 October 2015 did not locate any groundwater features within 500m from the site.

3.5 Acid Sulfate Soils

Information obtained from Australian Soil Resource Information System (<u>www.asris.csiro.au</u>) indicated that the site has no known occurrence of acid sulfate soils.

The NSW Office and Environment and Heritage (OEH) do not provide Acid Sulfate Soil (ASS) Risk Map coverage for the site.

The Fairfield City Council's Fairfield Local Environmental Plan 2013 – Combined Local Map 1 - Acid Sulfate Soils map does not apply to the site.

Based on the information reviewed, SLR considers that the risk of encountering acid sulfate soils during construction works as part of the proposed development is low.

4 PREVIOUS CONTAMINATION ASSESSMENTS

SLR understands that the following contamination assessment report has previously been prepared for the site:

• SLR 2016, 'Stage 1 Preliminary Site Investigation, Residential Aged Care Facilities, 19-25 Booralla Road, Edensor Park NSW', Report Number: 610.15583-R1 dated 11 February 2016, Version: Revision 1.

The objectives of the Stage 1 PSI (SLR 2016) were to:

- Assess the potential for contamination to be present on the site, as a result of past and present land use activities;
- Provide advice on the suitability of the land (with respect to contamination) for the proposed residential land use; and
- Provide recommendations on further contamination assessment, management or remediation works (if required).

SLR undertook the following scope of works to address the project objectives:

- A desktop review;
- A site walkover; and
- Data assessment and reporting.

Based on a review of the available site history data and observations made during the site walkover, SLR concludes the following:

- The potential for significant widespread contamination to be present on site soils that will be located outside the proposed building footprint, as a result of past and present land use activities, is considered to be low. However, asbestos contamination associated with the current and former sheds was observed on site during the site walkover. The potential for isolated chemical contamination (pesticides etc.) in the vicinity of the former and current sheds cannot be precluded;
- Given the sensitivity of the proposed land use (direct access to site soils), the site in its current condition is not suitable, with respect to contamination, for the proposed land use;
- It is considered that the site can be made suitable for the proposed development, subject to the
 undertaking of a stage 2 detailed site investigation, and associated remedial works (if warranted).
 The investigation should include the proposed building footprint area as well as the areas outside
 of the proposed building footprint. Based on the nature of contaminants of potential concern
 identified for the site, there are well established means of remediation and/or management that
 could be implemented to allow the proposed development to proceed, regardless of the findings
 of a stage 2 detailed site investigation.

SLR also recommended that the additional work be included as a condition of development consent and if required a remedial action plan (RAP) and a site validation report will be submitted to the Council.

5 CONCEPTUAL SITE MODEL

5.1 Areas of Environmental Concern and Contaminants of Potential Concern

The Stage 1 PSI (SLR 2016) identified two main areas of environmental concern (AEC) and its contaminants of potential concern (COPC) which may be present on the site. These AEC and COPC are presented in Table 1.

ID	Area of Environmental Concern	Contaminants of Potential Concern
AEC 01	Agricultural land use in the past	Pesticides, heavy metals, polychlorinated biphenyls
AEC 02	Potential asbestos containing material	Asbestos

5.2 Receptors and Pathways

5.2.1 Proposed Land Use Scenario

It is understood that the proposed development of the site includes the following:

- Demolition of existing dwelling and sheds;
- Construction of two, two storey buildings with one level of basement and lower ground floor levels;
- Excavation of up to 7m of soil and rock beneath the proposed building footprints;
- Landscaping and paved areas; and
- Continuation of Sweethaven Road through the north-eastern portion of the site towards the southern portion of the site.

Copies of the proposed development plan are provided in Appendix A.

5.2.2 Human Health – Direct Contact

If contamination is present in the site soils, it is possible that site users may be exposed to such contamination via direct contact with the contamination. It is considered appropriate to assess whether a direct contact source for future site users, site workers and visitors may be present on the site.

5.2.3 Human Health – Inhalation

If asbestos is present in the fill material, it is possible that construction workers may be exposed to such contamination via inhalation. It is considered appropriate to assess whether an asbestos source may be present on the site. If friable asbestos is present, both construction workers and future site users including residents may be exposed to asbestos.

5.2.4 Ecological – Terrestrial

If contamination is present in the soil, terrestrial ecosystems could be exposed to such contamination. NEPC (1999) requires a pragmatic risk-based approach be taken in applying ecological investigation and screening levels in a residential land use settings such as the site.

It is noted that the proposed redevelopment will include construction of residential aged care facility with basement and lower ground floor that requires excavation of up to 7m of soil and rock. Site improvement works including landscaping and garden areas are also prosed on site. In redevelopment scenarios of this nature, vegetation clearing, stripping of existing top soil and significant earthworks occurs.

It is also noted that observations made during the site walkover did not identify evidence of phytotoxic impact arising from contaminated soils.

Given the likelihood of topsoil stripping and proposed earthworks, and the lack of terrestrial ecosystem impact observed during the site walkover, it is considered reasonable that further assessment of unacceptable risk to terrestrial ecosystems from current site soils, is not warranted.

6 DATA QUALITY OBJECTIVES

Data quality objectives (DQO) for this stage 2 detailed site investigation have been developed using the seven step processes described in

• NSW DEC 2006, Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition).

Based on the DQOs, SLR prepared a sampling, analytical and quality plan (SAQP) (SLR 2016A) that presents the sampling rationale, methodology, analysis and quality control measures for the DSI. The SAQP (SLR, 2016A) is attached in Appendix B for reference. However, the following important points should be noted:

- The horizontal boundary of the project is defined by the site boundaries, as shown on Figure 2;
- The vertical boundary of the project is defined by the depth of potentially impacted material;
- The site covers an area of approximately 1.5 Ha. As such, SLR excavated a total of 25 test pits targeting the areas of environmental concern identified by the Stage 1 PSI (SLR 2016) to characterise the site. The number of sampling points chosen was in accordance with the numbers outlined in the NSW EPA 1995, 'Contaminated Sites: Sampling Design Guidelines' for a site this size;
- Soil samples from each test pit location were collected using the bucket of a 5.5 tonne track mounted excavator;
- Soil samples were collected from each sampling point at the surface and at regular depths thereafter, or at every identified change in soil lithology, or where there was evidence of contamination, or where the soil headspace screening result for ionisable volatile organic compounds (VOC) indicated the presence of petroleum hydrocarbon contamination;
- Materials encountered during sampling was logged in general accordance with the Unified Soil Classification System (UCS); and
- Soil samples were screened in the field for ionisable volatile organic compounds (VOC) using a calibrated photo-ionisation detector (PID).

6.1 Adopted Investigation Levels

6.1.1 Human Health - Direct Contact

The relevant direct contact:

- Health-Based Investigation Levels (HILs) for residential listed in Table 1A (1) in NEPC (1999); and
- Health Screening Levels (HSL) for residential listed in Table B4 of Friebel, E & Nadebaum, P (2011);

have been adopted for this assessment.

6.1.2 Human Health – Asbestos

NEPC (1999) provides health screening levels for asbestos contamination in soil, which are based on specific land use exposure scenarios, for three forms of asbestos: bonded asbestos containing material (ACM), friable asbestos (FA) and asbestos fines (AF). These health screening levels are provided in Table 2.

Table 2	Health Screening Levels for asbestos contamination in soil
---------	--

Form of asbestos	Health Scree		ning Level (W/W)	
	Residential A	Residential B	Recreational C	Commercial/Industrial

ACM	0.01%	0.04%	0.02%	0.05%
FA and AF		0	.001%	
All forms of asbestos	No visible asbestos in surface soil			

The laboratory method for analysis of asbestos in bulk materials is based on AS 4964-2004. Consequently, a practical quantification limit equal to or less than 0.001% by weight was not adopted and the limit is 0.1g/kg (equivalent to 0.01% w/w). For the purposes of this project, criteria of "no visible asbestos containing materials in surface soils (top 10cm)" and "no asbestos fibres detected in samples" has been adopted as initial screening criteria.

7 FIELDWORK SUMMARY

7.1 Service Clearance

The underground service clearance survey was undertaken on 20 June 2016. The service clearance was carried out by Ashleigh Ferris (Down Under Consulting), under the supervision of a suitably experienced SLR environmental engineer (Abanish Nepal).

The purpose of the service clearance was to assess the presence of underground services at the proposed intrusive sampling points. No underground services were identified near the proposed sampling points.

7.2 Test Pits Excavation

A total of 25 test pits were excavated across the site and targeting the identified areas of environmental concern. Test pits were excavated using a 5.5 tonne track mounted excavator. The work was undertaken on 20 June 2016 under the supervision of suitably experienced SLR environmental engineer (Abanish Nepal).

A summary of the test pitting works is presented in Table 3. The test pit locations are presented in Figure 3.

Sampling Point	AEC	Depth Excavated (m)	Comments
TP01	Potential asbestos containing fill	0.7	Target depth - 0.3m into natural
TP02	Potential asbestos containing fill	0.6	Target depth - 0.4m into natural
TP03	Potential asbestos containing fill	0.5	Target depth - 0.3m into natural
TP04	Potential asbestos containing fill	0.6	Target depth - 0.55m into natural
TP05	Potential asbestos containing fill and possible past agricultural land use	0.6	Target depth - 0.6m into natural
TP06	Potential asbestos containing fill and possible past agricultural land use	0.6	Target depth - 0.6m into natural
TP07	Possible past agricultural land use	0.6	Target depth - 0.6m into natural
TP08	Possible past agricultural land use	0.6	Target depth - 0.6m into natural
TP09	Possible past agricultural land use	0.5	Target depth - 0.3m into natural
TP10	Possible past agricultural land use	0.9	Target depth - 0.3m into natural
TP11	Possible past agricultural land use	0.7	Target depth - 0.3m into natural
TP12	Possible past agricultural land use	0.6	Target depth - 0.3m into natural
TP13	Possible past agricultural land use	0.7	Target depth - 0.3m into natural

Table 3 Soil Drilling Works Summary

Sampling Point	AEC	Depth Excavated (m)	Comments
TP14	Possible past agricultural land use	0.6	Target depth - 0.3m into natural
TP15	Potential asbestos containing fill and possible past agricultural land use	0.8	Target depth - 0.35m into natural
TP16	Potential asbestos containing fill and possible past agricultural land use	0.6	Target depth - 0.6m into natural
TP17	Possible past agricultural land use	0.6	Target depth - 0.6m into natural
TP18	Possible past agricultural land use	0.6	Target depth - 0.4m into natural
TP19	Possible past agricultural land use	0.6	Target depth - 0.6m into natural
TP20	Potential asbestos containing fill and possible past agricultural land use	0.7	Target depth - 0.4m into natural
TP21	Possible past agricultural land use	0.7	Target depth - 0.4m into natural
TP22	Possible past agricultural land use	0.5	Target depth - 0.5m into natural
TP23	Possible past agricultural land use	0.6	Target depth - 0.3m into natural
TP24	Possible past agricultural land use	0.6	Target depth - 0.4m into natural
TP25	Potential asbestos containing fill and possible past agricultural land use	0.7	Target depth - 0.3m into natural

Observations of soils encountered at each test pit location were logged. These logs are presented in Appendix C.

7.3 Soil Sampling

Soil sampling during test pitting was undertaken by a suitably experienced SLR environmental engineer (Abanish Nepal). Samples were collected in accordance with SLR standard operating procedures, which are based on industry accepted practices. Collected samples were placed into laboratory prepared jars (with Teflon lined lids) and zip lock bags. Jars and bags were labelled with a project number, sampling point and depth interval, and the date.

Replicate soil samples were collected (in zip lock bags) for headspace screening using a calibrated photo-ionisation detector (PID).

A total of 40 soil samples and one sample of potential asbestos containing material were collected during the fieldwork.

8 RESULTS

8.1 Sub-Surface Conditions

8.1.1 Lithology

The subsurface conditions encountered during the test pitting work suggested only a low potential for fill material to be present at the site. Most of the test pits, with the exception of test pits excavated within the close proximity to the site's boundaries (TP01, TP02, TP03, TP09, TP10, TP11, TP13, TP14, TP15, TP20 and TP25), encountered natural topsoil or clay at the surface. Shallow fill material (between 0.2m to 0.6m below ground level) comprising of gravelly clay and traces of concrete, brick and asphalt fragments were encountered within the test pits excavated close to the site's boundaries. The fill material was underlain by natural clay. All test pits were terminated within the natural clay profile.

The lithology encountered within the boreholes is presented in test pit logs attached in Appendix C. Other observations are outlined below.

8.1.2 VOC monitoring and Odours

No odours were observed in test pits or the samples collected. The PID readings were 0.0 parts per million (ppm) in all samples, indicating the absence of ionisable volatile organic contaminants in the samples collected.

8.1.3 Staining

No visual evidence of staining was observed in the soil samples collected.

8.1.4 Asbestos Containing Materials

A fragment of asbestos containing materials (ACM) was observed within the fill profile in test pit TP20. Asbestos was also detected in a soil sample collected from test pit TP20.

No potential asbestos containing materials were observed in the other soil samples collected or the soils removed from the test pits.

8.2 Laboratory Results

A total of 30 selected soil samples and one sample of the fragment of fibrous cement sheeting were scheduled for laboratory analysis, based on field observations and the contaminants of concern identified for the relevant areas of environmental concern.

Copies of the laboratory certificates of analysis are presented in Appendix D. Tabulated laboratory analytical results are presented in Table LR1.

The analytical results are summarised below:

- The concentrations of heavy metals were less than the adopted acceptance criteria for all samples analysed;
- The concentrations of hydrocarbons including (TRH and BTEX) were less than the adopted acceptance criteria for all samples analysed;
- The concentrations of other organic contaminants and pesticides (PAH, OCP, OPP and PCB) were less than the adopted acceptance criteria for all samples analysed; and

• Asbestos was not reported in the samples analysed except for fill sample TP20/0-0.2 and the fragment of fibrous cement sheeting sample TP20/PACM, where 2-6mm fibre bundle and an asbestos containing material fragment were identified respectively.

9 QUALITY ASSURANCE / QUALITY CONTROL

9.1 Fieldwork

9.1.1 Soil Sampling

The sampling was undertaken

- in accordance with SLR's standard operating procedures (SOP). These procedures are based on accepted industry practice for projects of this kind; and
- by a suitably experienced SLR environmental engineer (Abanish Nepal);

Soil samples were collected from the centre of the excavator bucket. Samples were placed directly into sample jars. To mitigate potential loss of volatile contaminants from samples, the following procedures were used:

- care was taken not to homogenise soils prior to sampling;
- soils were lightly compacted into each sample jar and sealed with a Teflon lined lid, to minimise headspace; and
- samples were stored and transported in insulated containers with ice.

It is considered that the appropriate media (soil) was sampled.

It is considered that all critical soil sampling points were sampled.

Sample sizes were the same during the sampling event.

Target sampling depths were achieved, and exceeded at a number of locations.

9.1.2 Sample Identification, Storage and Transport

Soil samples were placed in acid rinsed glass jars with Teflon lined lids and zip lock plastic bags, and stored in eskies with ice, for transportation to the analytical laboratory, under chain of custody (COC) protocol. The following information was recorded on the COC:

- project job number;
- date of sampling;
- sample identifier;
- sample matrix and container type;
- preservation methods used;
- analysis requirements for each sample;
- turnaround times required for analysis; and
- names and signatures of sender and receiving laboratory.

Sample receipt advice from the receiving laboratories confirmed that the samples were received chilled.

Copies of the chain of custody documentation are presented in Appendix D for the primary and the secondary laboratories.

9.1.3 Field Duplicates

Selected samples were split in the field and placed in separate sample containers. Samples were not mixed or homogenised prior to splitting, to reduce the risk of volatile contaminant losses.

Intra-laboratory duplicates were dispatched to the primary lab and inter-laboratory triplicates were dispatched to the secondary laboratory.

A total of thirty (30) primary soil samples were analysed for the project.

Sample duplicates were analysed at a rate of 10.0% for TRH, BTEX, OCP, OPP and PCB and at a rate of 7.0% PAH and heavy metals of the total primary samples analysed. This rate exceeds the minimum analysis rate of 5%.

Sample triplicates were analysed at a rate of 10.0% for TRH, BTEX, OCP, OPP and PCB and at a rate of 7.0% PAH and heavy metals of the total primary samples analysed. This rate exceeds the minimum analysis rate of 5%.

The parent / duplicate sample relationships and associated laboratory analytical data, is presented in Table LR2.

The relative percentage difference (RPD) between the parent sample and duplicates analysed, were all within the RPD acceptance criteria.

9.1.4 Trip Blanks and Trip Spikes

One trip spike was used during the fieldwork and scheduled for BTEXN analysis. The recovery results of the spike analysis were within the adopted acceptance criterion, indicating that sample preservation procedures during storage and transport were adequate for the mitigation of volatile sample losses from sample containers.

One trip blank was used during the fieldwork and scheduled for BTEXN analysis. The results of the blank analysis were within the adopted acceptance criterion, indicating that the potential for cross contamination of volatile contaminants between samples, during storage and transport, was negligible.

The trip blank and trip spike laboratory analytical data, is summarised in Table LR3.

9.1.5 Rinsate Blanks

Disposable sampling equipment were used during the fieldwork eliminating the need to collect a rinsate blank sample. Also, given that the soil samples were collected from the centre of the excavator bucket, the excavator bucket was not decontaminated between the sampling points. The likelihood of cross contamination between each test pit location was negligible as the soils sampled from the excavator bucket was not in contact with the walls of the bucket nor with the soils that have fallen from the side walls of the test pit.

9.1.6 Calibration

One photo-ionisation detector (PID) was used during the fieldwork. A copy of the daily calibration record for the PID is presented in Appendix E.

9.2 Laboratory

Copies of the laboratory certificates of analysis, data quality objective reports, sample receipt advice and chain of custody records for the primary and secondary laboratories are presented in Appendix D.

The results of an assessment of laboratory analytical data quality indicate that:

- Laboratory analysis of the samples was undertaken by NATA accredited environmental testing laboratories (SGS Environmental, Alexandria NSW and Eurofins MGT, Lane Cove West NSW);
- The identified contaminants of potential concern were analysed for;
- The laboratory analytical methods and laboratory limits of reporting were appropriate for the objective of this project;
- The laboratory analytical methods and laboratory limits of reporting were consistent between the primary and secondary analytical laboratories;
- The same analytical laboratory was used for analysing all primary samples;
- Same analytical laboratory was used for analysing all duplicate samples;
- Same analytical laboratory was used for analysing all triplicate samples
- Samples were extracted and analysed within applicable laboratory holding times;
- The laboratory sample surrogate recoveries were within laboratory acceptance criteria;
- The laboratory method blank analytical results were less than the laboratory limit of reporting;
- The relative percentage differences (RPD) between samples and laboratory prepared duplicates, were within the laboratories adopted acceptance criteria;
- The laboratory control sample recoveries were within the laboratory's adopted acceptance criteria;
- The laboratory matrix spike recoveries were within the laboratory's adopted acceptance criteria, with the following exception:
 - Two metal analyses in SGS batch SE153806. The laboratory reported that recovery failed acceptance criteria due to matrix interference.

A copy of the laboratory data quality indicators is presented in Appendix D.

9.3 Data Quality Indicators

The assessment of field and laboratory data was compared to the data quality indicators adopted for the project. This assessment is presented in Table 4.

Table 4 Data Quality Indicator Assessment Results

Completeness							
Field Considerations	Laboratory Considerations	Comment					
All critical locations sampled	All critical samples analysed in accordance with the data quality	Acceptable					
All samples collected (from grid and at depth)	objectives						
	All analytes analysed in accordance						
SOPs appropriate and complied with	with the data quality objectives						
	Appropriate methods and LORs						
Experienced sampler							
	Sample documentation complete						
Documentation correct							
	Sample holding times complied with						
Comparability							

Field Considerations	Laboratory Considerations	Comment
Same SOPs used on each occasion	Sample analytical methods used (including clean-up)	Acceptable
Experienced sampler	Sample LORs (justify/quantify if different)	
Climatic conditions (temperature, rainfall, wind)	Same laboratories (justify/quantify if different)	
Same types of samples collected (filtered, size fractions)	Same units (justify/quantify if different)	
Representativeness		
Field Considerations	Laboratory Considerations	Comment
Appropriate media sampled in accordance with the data quality objectives	All samples analysed in accordance with the data quality objectives	Acceptable
All media identified in DQO sampled		
Precision		
Field Considerations	Laboratory Considerations	Comment
SOPs appropriate and complied with	Analysis of:	Acceptable
	 laboratory and inter laboratory duplicates 	
	field duplicates	
	 laboratory-prepared volatile trip spikes 	
Accuracy (bias)		
Field Considerations	Laboratory Considerations	Comment

	SOPs complied	appropriate with	and	Analysis of:	Acceptable
				field blanks	
				rinsate blanks	
				reagent blanks	
				method blanks	
				matrix spikes	
				matrix spike duplicates	
				 surrogate spikes 	
				reference materials	
				 laboratory control samples 	
_				 laboratory-prepared spikes 	

The data is therefore considered to be adequately complete, comparable, representative, precise and accurate for the purpose of interpretation within the objective of this project.

10 DISCUSSION

The field observations and laboratory analytical results have been used for the purposes of assessing the contamination status of the site, in the context of the proposed re-development (residential land use scenario).

10.1 Presence of Contaminants

10.1.1 Contaminants in Soil

Asbestos fibre bundles were detected in the fill material sample collected from test pit TP20. One fragment of ACM was also observed in test pit TP20. No other samples reported asbestos. A number of fragments of fibrous cement sheet that have the potential to contain asbestos were also observed along the site's southern, south-western, western and south-eastern boundaries during the site walkover. SLR considers that the potential for asbestos to be present in the site soils is low given that:

- 1) there is limited fill material has been observed on the site, and
- 2) the fill material observed did not contain significant demolition rubble.

The concentrations of chemical contaminants (heavy metals, petroleum hydrocarbon, pesticides, polyaromatic hydrocarbons and polychlorinated biphenyls) reported in the samples were below the adopted soil investigation levels for the proposed residential land use.

Based on the field observations and laboratory analytical results, SLR considers that the potential for the site soils to contain significant widespread contamination is low to negligible. However, the observed fragments of fibrous cement sheeting observed on the soil surface, along the site boundaries should be noted.

10.2 Risk to Human Health

10.2.1 Contaminants in Soil

The concentrations of organic and inorganic contaminants of potential concern reported in the soil samples analysed were below the adopted soil investigation levels for the proposed residential land use. As such, SLR considers that these contaminants are unlikely to pose a risk to human health.

The identification of fibre bundles in the soil sample collected from test pit TP20 is unlikely to pose a significant risk to future site users or construction workers for the following reasons:

- The reported asbestos is likely to be an isolated surficial occurrence, and is unlikely to represent widespread asbestos contaminated soils;
- Given that the test pit location TP20 is located within the very close proximity to the proposed building foot print near the southern boundary of the site, the presence of fibre bundles and the asbestos impacted soils in test pit TP20 is likely to be excavated and removed from site as part of the foundation excavation; and
- The site is subject to undergo extensive redevelopment comprising of excavation of up to 7m of soils and rock. Site clearance works are likely to take place prior to the commencement of construction excavation on site. In construction scenarios of this nature, all site soils to depths up to 0.2m from the existing ground level surface are likely to be disturbed, stripped and taken offsite for disposal suggesting that all asbestos fragments is likely to be removed from the site.

Additionally, fragments of fibrous cement sheeting were observed on the site surface, along the site boundaries. Whilst they are unlikely to pose a risk of harm in its current condition, if not removed appropriately these fragments and sheet could break during the proposed development works and pose a risk to construction workers and future site users. SLR recommends that fragments of fibrous cement sheeting be removed offsite by a licensed asbestos contractor, and an Asbestos Clearance Certificate be issued by a qualified occupational hygienist.

Overall, SLR considers that the contamination status of the soils is unlikely to pose an unacceptable risk to human health, in the context of the proposed residential land use, subject to the removal of the identified asbestos impacted soils at test pit TP20 and the fragments of fibrous cement sheeting.

10.3 Site Suitability

SLR considers that the site is suitable for the proposed residential land use, subject to the following (refer to the recommendations in Section 11):

- The removal of fragments of fibrous cement sheeting observed along the site surface along the boundaries, **prior to site clearing works**; and
- The removal of asbestos impacted surficial soils at TP20, prior to site clearing works.

11 CONCLUSIONS AND RECOMMENDATIONS

Based on a review of information presented in the Stage 1 PSI (SLR, 2016), observations made during fieldwork, results of laboratory analysis and the proposed redevelopment of the site, SLR concludes that:

- Potential for the site soils to contain significant, widespread contamination is low to negligible. SLR considers that the contamination status of the soils are unlikely to pose an unacceptable risk to human health, in the context of the proposed residential land use;
- SLR considers that the site is suitable for the proposed residential land use, subject to the following recommendations being addressed at the construction phase.

SLR recommends that the following be conducted prior to site clearing works, to minimise potential pose a contamination risk to construction workers and site users:

- The removal of fragments of fibrous cement sheeting observed along the site surface along the boundaries; and
- The removal of asbestos impacted surficial soils at TP20 (on a 5m radius around the location of TP20, to a depth of 200mm).

The above works should be conducted by appropriately licensed asbestos contractors, under the supervision of a qualified environmental consultant. Asbestos clearance certificates should be issued by a qualified occupational hygienist for areas where asbestos or asbestos impacted soils have been removed, prior to the commencement of site clearance or bulk excavation works.

This report must be read in conjunction with the limitations set out in Section 13.

12 REFERENCES

Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 2: Application document', CAC CARE Technical Report No. 10

National Environment Protection Council (NEPC) 1999a, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

NSW DEC 2006, 'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition)'.

NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites'.

SLR 2016, 'Stage 1 Preliminary Site Investigation, Residential Aged Care Facilities, 19-25 Booralla Road, Edensor Park NSW', Report Number: 610.15583-R1 dated 11 February 2016, Version: Revision 1.

NSW DECCW, 'Vapour Intrusion: Technical Practice Note', dated 2010.

13 LIMITATIONS

This report is for the exclusive use of Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR Consulting.

This report has been prepared based on the scope of services (see below). SLR Consulting cannot be held responsible to the Client and/or others for any matters outside the agreed scope of services. Other parties should not rely upon this report and should make their own enquiries and obtain independent advice in relation to such matters.

This report has been prepared by SLR Consulting with reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected (data, surveys, analyses, designs, plans and other information), which has been accepted in good faith as being accurate and valid.

It should be noted that many investigations are based upon an assessment of potentially contaminating processes which may have occurred historically on the site. This assessment is based upon historical records associated with the site. Such records may be inaccurate, absent or contradictory. In addition documents may exist which are not readily available for public viewing.

Except where it has been stated in this report, SLR Consulting has not verified the accuracy or completeness of the data relied upon. Statements, opinions, facts, information, conclusions and/or recommendations made in this report ("conclusions") are based in whole or part on the data obtained, those conclusions are contingent upon the accuracy and completeness of the data. SLR Consulting cannot be held liable should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to SLR Consulting leading to incorrect conclusions.

Should the report be reviewed for any reason, the report must be reviewed in its entirety and in conjunction with the associated Scope of Services. It should be understood that where a report has been developed for a specific purpose, for example a due diligence report for a property vendor, it may not be suitable for other purposes such as satisfying the needs of a purchaser or assessing contamination risks for classifying the site. The report should not be applied for any purpose other than that originally specified at the time the report was issued.

Report logs, figures, laboratory data, drawings, etc. are generated for this report by SLR consultants (unless otherwise stated) based on their individual interpretation of the site conditions at the time the site visit was undertaken. Although SLR consultants undergo training to achieve a standard of field reporting, individual interpretation still varies slightly. Information should not under any circumstances be redrawn for inclusion in other documents or separated from this report in any way.

Table LR1 - Soil Analysis Results Proposed Redevelopment

			Description	TD01/0.0.0.0	TD02/0.0.0.2		TP04/0.05-0.25			TD07/0.0.0.2			TD00/0.2.0.4		TD11/0.0.0.2
			Description	TP01/0.0-0.2 20-6-2016	TP02/0.0-0.2 20-6-2016	TP03/0.0-0.2 20-6-2016			TP06/0.0-0.2	TP07/0.0-0.2	TP08/0.05-0.25	TP09/0.0-0.2 20-6-2016	TP09/0.2-0.4	TP10/0.0-0.2	TP11/0.0-0.2
			Sample Date	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016
			Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyte Name	Units	Direct Contact HIL - Residential D (mg/kg)	Reporting Limit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Heavy Metals															
Arsenic, As	mg/kg	100	3	17	34	6	6	5	7	8	4	7	5	7	8
Cadmium, Cd			0.3	0.6	0.8	0.3	0.5	0.3	0.4	0.5	4 <0.3	0.4	0.4	0.4	0.4
Chromium, Cr	mg/kg	20	0.3	15	17			13			<0.3 12			1	
Copper, Cu	mg/kg	100	0.3	15 43	17 96	11 14	14 18	13	15 17	15 24	12	16 16	13 22	13 22	16 18
Lead, Pb	mg/kg	6000 300	0.5	43 53	96	14 20	18 26	17	17	24	18	16	16	19	18 19
Nickel, Ni	mg/kg			53 8.9	100 7.5	6.1		17	18 4.5	5.1	3.5	18 5.7	16 5.1	19 6.5	
Zinc, Zn	mg/kg	400	0.5 0.5	8.9 54			8.1 49	13 36	4.5 62	5.1 33	3.5	5.7 27	5.1 36		6.9 32
Zinc, Zn Mercury	mg/kg	7400 40	0.5	0.03	52 0.05	28 0.01	49 <0.01	30 <0.01	62 <0.01	33 <0.01	<0.01	0.02	30 <0.01	41 <0.01	0.01
Mercury	mg/kg	40	0.01	0.03	0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	0.01
BTEX															
Benzene	mg/kg	100	0.1	<0.1		<0.1				<0.1					<0.1
Toluene	mg/kg	14000	0.1	<0.1		<0.1				<0.1					<0.1
Ethylbenzene	mg/kg	4500	0.1	<0.1		<0.1				<0.1					<0.1
m/p-xylene	mg/kg		0.2	<0.2		<0.2				<0.2					<0.2
o-xylene	mg/kg		0.1	<0.1		<0.1				<0.1					<0.1
Total Xylenes	mg/kg	12000	0.3	<0.3		<0.3				<0.3					<0.3
TRH															
TRH C6-C9	mg/kg		20	<20		<20				<20					<20
TRH C6-C10	mg/kg	4400	25	<25		<25				<25					<25
TRH C6-C10 minus BTEX (F1)	mg/kg		25	<25		<25				<25					<25
TRH >C10-C16 (F2)	mg/kg		25	<25		<25				<25					<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	3300	25	<25		<25				<25					<25
TRH >C16-C34 (F3)	mg/kg	4500	90	<90		<90				<90					<90
TRH >C34-C40 (F4)	mg/kg	6300	120	<120		<120				<120					<120
D 411															
PAH															
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td></td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>< 0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)		0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total PAH (18) Total PAH (NEPM/WHO 16)	mg/kg	300	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
	mg/kg		8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Total OCP	mg/kg	6-300	0.1-0.2	<0.1		<0.1				<0.1					<0.1
	iiig/kg	0-300	0.1-0.2	∼ ∪.1		-v.1				NO.1					~0.1
Total OPP	mg/kg		0.2-0.5	<0.2		<0.2				<0.2					<0.2
Total PCBs (Arochlors)	mg/kg	1	1	<1		<1				<1					<1
Asbestos	No Unit	Non detect	Detection	No	No	No	No	No	No	No	No	No	No	No	No

610.15583.00200 Stage 2 DSI 19-25 Booralla Road, Edensor Park NSW

Table LR1 - Soil Analysis Results Proposed Redevelopment

			Description	TP12/0.05-0.25	TP13/0.0.0.2	TP14/0.0-0.2	TP15/0.0-0.2	TP15/0.45-0.65	TP16/0.0-0.2	TP17/0.0-0.2	TP18/0.0-0.2	TP18/0.2-0.4	TP19/0.0-0.2	TP20/0.0-0.2	TP21/0.0-0.2
			Sample Date	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016
			Sample Date	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010	20-0-2010
			Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyte Name	Units	Direct Contact HIL - Residential D (mg/kg)	Reporting Limit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Heavy Metals															
Arsenic, As	mg/kg	100	3	9	7	8	8	6	7	6	7	7	8	7	9
Cadmium, Cd	mg/kg	20	0.3	0.5	0.4	0.6	0.6	0.3	0.4	0.4	0.5	0.5	0.5	0.9	0.7
Chromium, Cr	mg/kg	100	0.3	16	15	15	18	12	14	13	13	14	17	22	20
Copper, Cu	mg/kg	6000	0.5	26	25	31	28	24	17	29	28	25	29	26	29
Lead, Pb	mg/kg	300	1	25	18	23	48	16	38	18	27	21	25	73	25
Nickel, Ni	mg/kg	400	0.5	9.2	7.4	7.0	9.4	5.2	5.2	8.5	8.2	7.8	11	15	10
Zinc, Zn	mg/kg	7400	0.5	36	41	56	99	41	61	44	67	37	64	430	47
Mercury	mg/kg	40	0.01	<0.01	0.04	0.02	0.04	<0.01	0.03	0.02	0.03	<0.01	0.01	0.05	0.03
	00														
BTEX															
Benzene	mg/kg	100	0.1			<0.1	<0.1	<0.1					<0.1		
Toluene	mg/kg	14000	0.1			<0.1	<0.1	<0.1					<0.1		
Ethylbenzene	mg/kg	4500	0.1			<0.1	<0.1	<0.1					<0.1		
m/p-xylene	mg/kg		0.2			<0.2	<0.2	<0.2					<0.2		
o-xylene	mg/kg		0.1			<0.1	<0.1	<0.1					<0.1		
Total Xylenes	mg/kg	12000	0.3			<0.3	<0.3	<0.3					<0.3		
TRH															
TRH C6-C9	mg/kg		20			<20	<20	<20					<20		
TRH C6-C10	mg/kg	4400	25			<25	<25	<25					<25		
TRH C6-C10 minus BTEX (F1)	mg/kg		25			<25	<25	<25					<25		
TRH >C10-C16 (F2)	mg/kg		25			<25	<25	<25					<25		
TRH >C10-C16 (F2) - Naphthalene	mg/kg	3300	25			<25	<25	<25					<25		
TRH >C16-C34 (F3)	mg/kg	4500	90			<90	<90	<90					<90		
TRH >C34-C40 (F4)	mg/kg	6300	120			<120	<120	<120					<120		
РАН															
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>3</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	3	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total PAH (18)	mg/kg	300	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg		8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Total OCP	mg/kg	6-300	0.1-0.2			<0.1	<0.1	<0.1					<0.1		
Total OPP	mg/kg		0.2-0.5			<0.2	<0.2	<0.2					<0.2		
Total PCBs (Arochlors)	mg/kg	1	1			<1	<1	<1					<1		
Asbestos	No Unit	Non detect	Detection	No	No	No	No		No	No	No		No	Yes	No

610.15583.00200 Stage 2 DSI 19-25 Booralla Road, Edensor Park NSW

Table LR1 - Soil Analysis Results Proposed Redevelopment

			Description	T D00/0 0 0 0		TD0.4/0.0.0.0			TRACIDA ONA	DUDA	
			Description	TP22/0.0-0.2	TP23/0.0-0.2	TP24/0.0-0.2	TP25/0.0-0.2	TP25/0.4-0.6	TP20/PACM	DUP01	Dup03
			Sample Date	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016	20-6-2016
			Matrix	Soil	Soil	Soil	Soil	Soil	Material	Soil	Soil
Analyte Name	Units	Direct Contact HIL - Residential D (mg/kg)	Reporting Limit	Result	Result	Result	Result	Result	Result	Result	Result
Heavy Metals											
Arsenic, As	mg/kg	100	3	7	7	8	8	7		7	6
Cadmium, Cd	mg/kg	20	0.3	0.5	0.7	0.5	0.5	<0.3		0.7	0.3
Chromium, Cr	mg/kg	100	0.3	15	13	15	14	15		16	14
Copper, Cu	mg/kg	6000	0.5	25	21	22	17	15		29	15
Lead, Pb	mg/kg	300	1	20	25	21	27	15		60	15
Nickel, Ni	mg/kg	400	0.5	7.1	8.7	7.7	8.9	6.7		9.7	6.5
Zinc, Zn	mg/kg	7400	0.5	34	45	45	57	27		110	30
Mercury	mg/kg	40	0.01	0.02	0.04	0.03	0.03	0.01		0.03	0.01
	ingity		0.01	0.02	0.04	0.00	0.00	0.01		0.00	0.01
BTEX											
Benzene	mg/kg	100	0.1	<0.1		<0.1				<0.1	
Toluene	mg/kg	14000	0.1	<0.1		<0.1				<0.1	
Ethylbenzene	mg/kg	4500	0.1	<0.1		<0.1				<0.1	
m/p-xylene	mg/kg	1000	0.2	<0.2		<0.2				<0.2	
o-xylene	mg/kg		0.1	<0.1		<0.1				<0.1	
Total Xylenes	mg/kg	12000	0.3	<0.3		<0.3				<0.3	
			0.0	0.0		0.0				0.0	<u> </u>
TRH											
TRH C6-C9	mg/kg		20	<20		<20				<20	
TRH C6-C10	mg/kg	4400	25	<25		<25				<25	
TRH C6-C10 minus BTEX (F1)	mg/kg		25	<25		<25				<25	
TRH >C10-C16 (F2)	mg/kg		25	<25		<25				<25	
TRH >C10-C16 (F2) - Naphthalene	mg/kg	3300	25	<25		<25				<25	
TRH >C16-C34 (F3)	mg/kg	4500	90	<90		<90				<90	
TRH >C34-C40 (F4)	mg/kg	6300	120	<120		<120				<120	
	5.5		-	-		~				-	
РАН											
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>3</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td></td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	3	0.3	<0.3	<0.3	<0.3	<0.3	<0.3		<0.3	<0.3
Total PAH (18)	mg/kg	300	0.8	<0.8	<0.8	<0.8	<0.8	<0.8		<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg		8	<8	<8	<8	<8	<8		<8	<8
	5.5			-	-	~		-		-	-
Total OCP	mg/kg	6-300	0.1-0.2	<0.1		<0.1				<0.1	
Total OPP	mg/kg		0.2-0.5	<0.2		<0.2				<0.2	
Total PCBs (Arochlors)	mg/kg	1	1	<1		<1				<1	
Asbestos	No Unit	Non detect	Detection	No	No	No	No	No	Yes		

610.15583.00200 Stage 2 DSI 19-25 Booralla Road, Edensor Park NSW

Description Theory of the sector Theory of the sec					05.50000.000		1											
Service in the interpretation of the inter			Sample Name				BUBAIA					DUDAAA						
Antopia NameUnitsNomeUnitsNome																		
Ander and the basis Appendix and the basis an						RPD (%)		RPD (%)			RPD (%)		RPD (%)					
NealeImage <th< th=""><th>An al de Nieure</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	An al de Nieure																	
Arene, Anmg/g1871891780780957.080957.080957.080957.080957.080957.080957.0807.07.0807.07.0807.0<		Units	Reporting Limit	Result	Result		Result		Result	Result		Result						
Camman, Cai mg/g 0.3 0.6 0.7 1.9 0.64 - 0.03 - 0.04 - 0.04 Consum, Ca mg/g 0.5 18 16 17% 18 5% 15 54 15 54 55 16 5% Consum, Ca mg/g 0.5 28 29 4% 28 10 15 16 5% 55 5% 16 16 5% 16 5% 5% 16		ma // ca	4	0	7	400/	0.2	150/	7	c	450/		10%					
Chronen, G'mg/g0.5181819941514751695Lasd, Fnmg/g0.5240.745240.715150.71516Lasd, Fnmg/g0.50.440.77511128450.70.5170.7Ling, Fnmg/g0.550.0540.050.0540.0522%0.050.0110.7751112845710.7751112845710.7751111100.0110.70.7751112845710.775710.010.0110.70.77571100.0110.70.7757110 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td></t<>					-							4						
Compart Compart LandPayle wyle12818181815151515161	*											4						
icad. Pomghq1466027371118151707373737Ano, Anmghq0.50.40.40.40.40.40.5270.5270.5170.57575770.5170.575<												-						
Nixele												4						
Jnc. An mpkg 2 99 110 115 100 276 277 287 176 28 496 Merany mgkg 0.09 0.09 0.09 2276 0.01 0.01 0.06 - Bersma mgkg 0.11 -0.11 -0.11 - 40.1 40.1 40.												-						
Mercurymayba mayba marka0.060.040.0329%0.050.010.010%0.05-BTEXmarka markamayba mayba 0.110.110.110.110.10.11	/											4						
PIC PIC <td></td>																		
Bindome mg/bg 0.1 -0.1	Moroday	mg/ng	0.00	0.04	0.00	2370	0.00	22/0	0.01	0.01	070	40.00						
Bindome mg/bg 0.1 -0.1	BTEX																	
Toture mg/g 0.1		ma/ka	0.1	<0.1	<0.1		<0.1		<0.1	<0.1		<0.1						
Englanziane mg/g 0.1 ol.1																		
mic vigene mg/vg 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Ethylbenzene																	
ox/sine mg/sq 0.1 vol.1 vol.1 <th< td=""><td>m/p-xylene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	m/p-xylene																	
Total Xplanes mg/kg 0.3 40.3 -0.3	o-xylene																	
TH Image Im	-																	
TH 0-C9 mg/kg 20 -00 -20 0 -20 0 -20 0 -20 0 -20 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 0 -200 -0 <td></td>																		
TH + 0.6-10 mg/hg 25 <25 <25 <26 <26 <26 < <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26 <26	TRH																	
THI GC 10 mpkg 25 425 425 426 - 426 426 - 426	TRH C6-C9	mg/kg	20	<20	<20		<20		<20	<20		<20						
TH + DC0-16 (F2) mg/hg 25 <45 <45 < < < < < < < < < < < < < < < < < < < < <	TRH C6-C10	mg/kg	25	<25	<25		<20		<25	<25		<20						
THH >C10-C16 (F2) - Naphthalene mg/kg 96 < < < < < < < < < < < < < < < <	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25		<20		<25	<25		<20						
THH >C16+C3 (F3) mg/kg 90 +300 +-0 +500 +500 +-0 +100 TRH >C34-C40 (F4) mg/kg 120 +120 +20 +100 +120	TRH >C10-C16 (F2)	mg/kg	25	<25	<25		<50		<25	<25		<50						
TEH = C24-C40 (F4) mg/kg 120 <120 <120 < <th><<th><<th><<th><<th><<t< td=""><td>TRH >C10-C16 (F2) - Naphthalene</td><td>mg/kg</td><td>25</td><td><25</td><td><25</td><td></td><td><50</td><td></td><td><25</td><td><25</td><td></td><td><50</td><td></td></t<></th></th></th></th></th>	< <th><<th><<th><<th><<t< td=""><td>TRH >C10-C16 (F2) - Naphthalene</td><td>mg/kg</td><td>25</td><td><25</td><td><25</td><td></td><td><50</td><td></td><td><25</td><td><25</td><td></td><td><50</td><td></td></t<></th></th></th></th>	< <th><<th><<th><<t< td=""><td>TRH >C10-C16 (F2) - Naphthalene</td><td>mg/kg</td><td>25</td><td><25</td><td><25</td><td></td><td><50</td><td></td><td><25</td><td><25</td><td></td><td><50</td><td></td></t<></th></th></th>	< <th><<th><<t< td=""><td>TRH >C10-C16 (F2) - Naphthalene</td><td>mg/kg</td><td>25</td><td><25</td><td><25</td><td></td><td><50</td><td></td><td><25</td><td><25</td><td></td><td><50</td><td></td></t<></th></th>	< <th><<t< td=""><td>TRH >C10-C16 (F2) - Naphthalene</td><td>mg/kg</td><td>25</td><td><25</td><td><25</td><td></td><td><50</td><td></td><td><25</td><td><25</td><td></td><td><50</td><td></td></t<></th>	< <t< td=""><td>TRH >C10-C16 (F2) - Naphthalene</td><td>mg/kg</td><td>25</td><td><25</td><td><25</td><td></td><td><50</td><td></td><td><25</td><td><25</td><td></td><td><50</td><td></td></t<>	TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25		<50		<25	<25		<50	
PAH Image I	TRH >C16-C34 (F3)	mg/kg	90	<90	<90		<100		<90	<90		<100						
Naphthalene mg/kg 0.1 40.1 40.1 - 40.5 - 40.1 40.1 - 40.1 - 40.1 - 40.1 40.1 - - 40.1 40.1 - - 40.1 40.1 -	TRH >C34-C40 (F4)	mg/kg	120	<120	<120		<100		<120	<120		<100						
Naphthalene mg/kg 0.1 40.1 40.1 - 40.5 - 40.1 40.1 - 40.1 - 40.1 - 40.1 40.1 - - 40.1 40.1 - - 40.1 40.1 -																		
2-methylnaphthalene mg/kg 0.1 <0.1 <0.1 - - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																		
1-methylapathlalene mg/kg 0.1 <0.1 <0.1 - - - - 0.1 <0.1 - - - 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.5</td> <td></td> <td></td> <td></td> <td></td> <td><0.5</td> <td></td>	•						<0.5					<0.5						
Acenaphthylene mg/kg 0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																		
Accenaphthene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1<																		
Fluorene mg/kg 0.1 <0.1 <0.1 <0.0 <0.5 < <0.1 <0.1 <0.5 < Phenanthrene mg/kg 0.1 <0.1 <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < Authracene mg/kg 0.1 <0.1 <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <0.1 <0.5 < <0.1 <td></td>																		
Phenanthrene mg/kg 0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <																		
Anthracene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 - <0.1 <0.1 <0.1 <0.5 - <0.1 <0.1 <0.1 <0.5 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <td></td>																		
Fluoranthene mg/kg 0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																		
Pyrene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.1 <0.5 - <0.1 <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.1 <0.1 <0.5 - <0.5 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																		
Benzo(a)anthracene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.1 <0.5 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		00					1											
Chrysene mg/kg 0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <- <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																		
Benzo(b&i)fluoranthene mg/kg 0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 Benzo(k)fluoranthene mg/kg 0.1 <0.1																		
Benzok/furanthene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.5 - Benzok/apyrene mg/kg 0.1 <0.1	-																	
Benzolapyrene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0																		
Inden(1,2,3-cd)pyrene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																		
Dibenzo(ah)anthracene mg/kg 0.1 <0.1 <0.1 - <0.5 - <0.1 <0.1 <0.5 - Benzo(ghi)perylene mg/kg 0.1 <0.1																		
Benzo(shi)perylene mg/kg 0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ (mg/kg) 0.3 <0.3</lor=0<>																		
Carcinogenic PAHs, BaP TEQ <lor=0< th=""> TEQ (mg/kg) 0.3 <0.3 <0.3 <0.3 <0.5 <0.3 <0.3 <0.5 Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) 0.3 <0.3</lor=lor<></lor=0<>																		
Carcinogenic PAHs, BaP TEQ <lor=lor< th=""> TEQ (mg/kg) 0.3 <0.3 <0.3 <0.6 <0.6 <0.3 <0.3 0.6 <0.3 <0.3 <0.6 <0.3 <0.3 <0.3 <0.6 <0.3 <0.3</lor=lor<>																		
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""> TEQ (mg/kg) 0.2 <0.2 <0.2 - 1.2 - <0.2 <0.2 - 1.2 - <0.2 <0.2 - 1.2 - <0.2 <</lor=lor>	Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor=lor<>																	
Total PAH (18) mg/kg 0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8<																		
Total PAH (NEPM/WHO 16) mg/kg 8 <8 <8 <-8 <88 <-8 <88 <-8 <88 <-8 <88 <-1 <-1 <-1 <-1 <-1 <- <- < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <																		
Image: state in the state																		
Total OPP mg/kg 0.2-2.0 ND ND ND																		
Image: Constraint of the system Image: Constra	Total OCP	mg/kg	0.05-0.2	ND	ND		ND											
	Total OPP	mg/kg	0.2-2.0	ND	ND		ND											
Total PCB mg/kg 0.5-1.0 ND ND ND																		
	Total PCB	mg/kg	0.5-1.0	ND	ND		ND											

-- not applicable

ND non detect

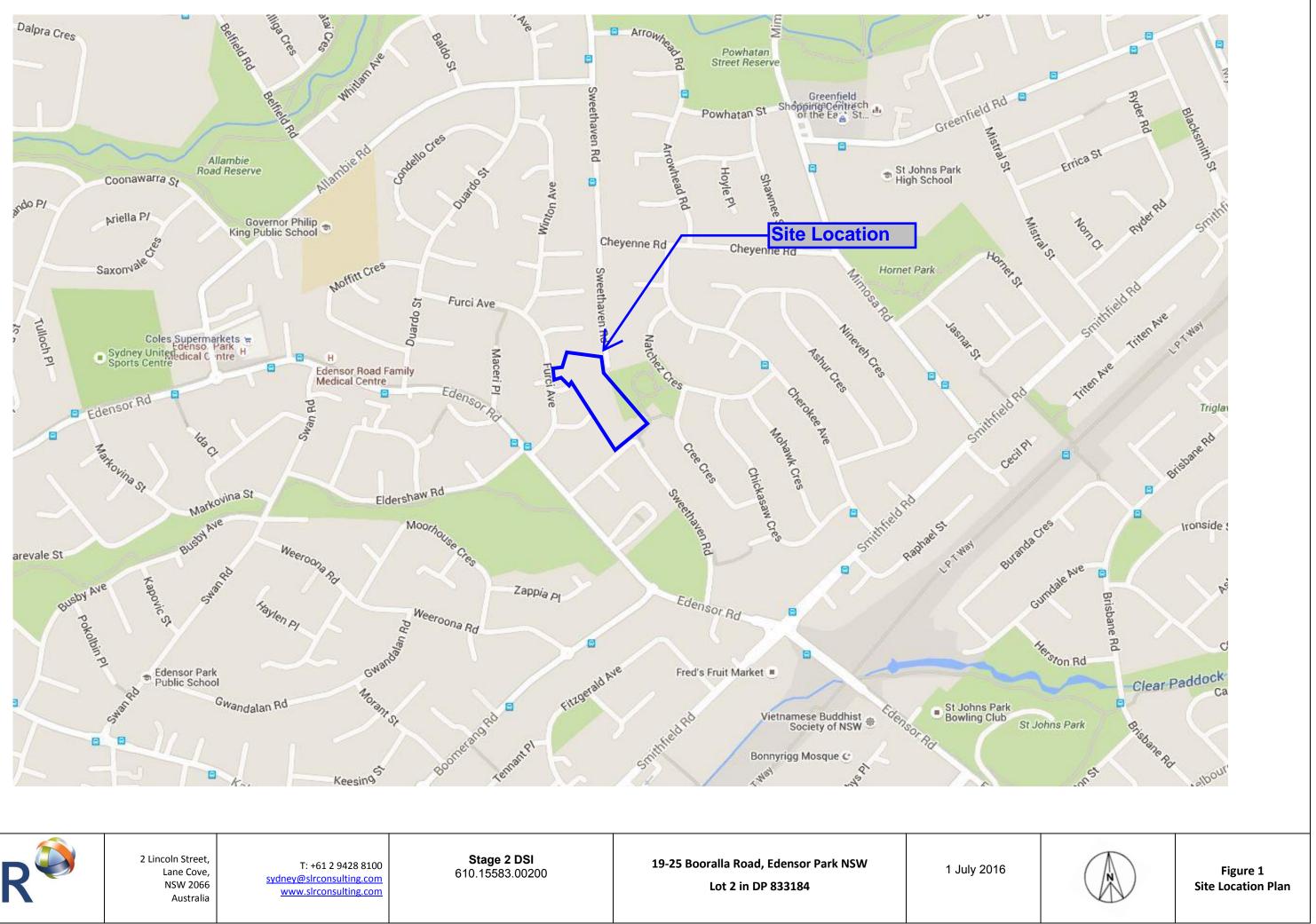

610.15583.00200 Stage 2 DSI 19-25 Booralla Road, Edensor Park NSW

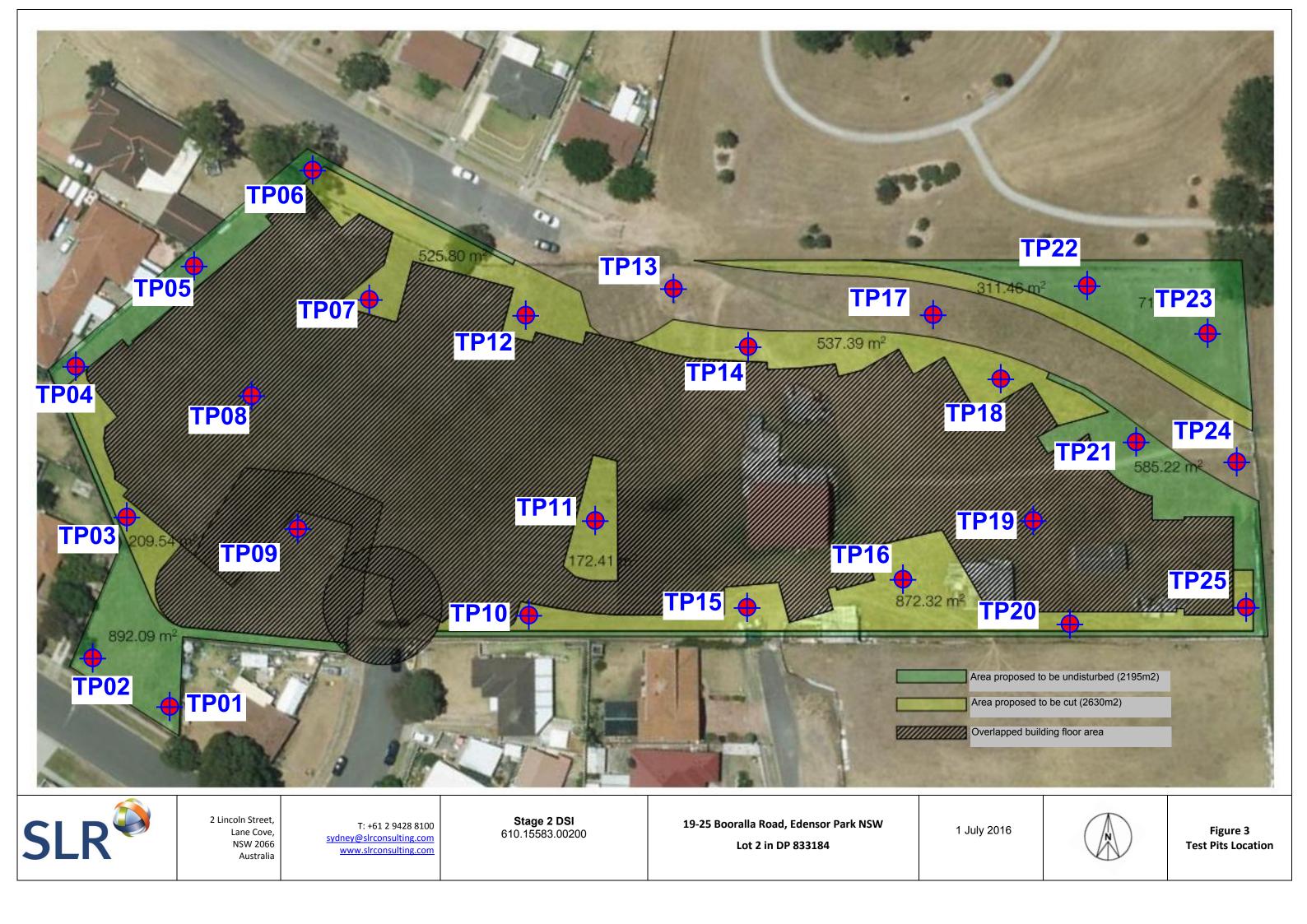
Table LR3 - TB and TS Results Proposed Redevelopment

		Sample Name	SE153862.033	SE153862.034
		Description	TRIP BLANK	TRIP SPIKE
		Sample Date	16-6-2016	16-6-2016
		Matrix	Soil	Soil
Analyte Name	Units	Reporting Limit	Result	Result
Benzene	mg/kg	0.1	<0.1	[90%]
Toluene	mg/kg	0.1	<0.1	[99%]
Ethylbenzene	mg/kg	0.1	<0.1	[82%]
m/p-xylene	mg/kg	0.2	<0.2	[87%]
o-xylene	mg/kg	0.1	<0.1	[91%]

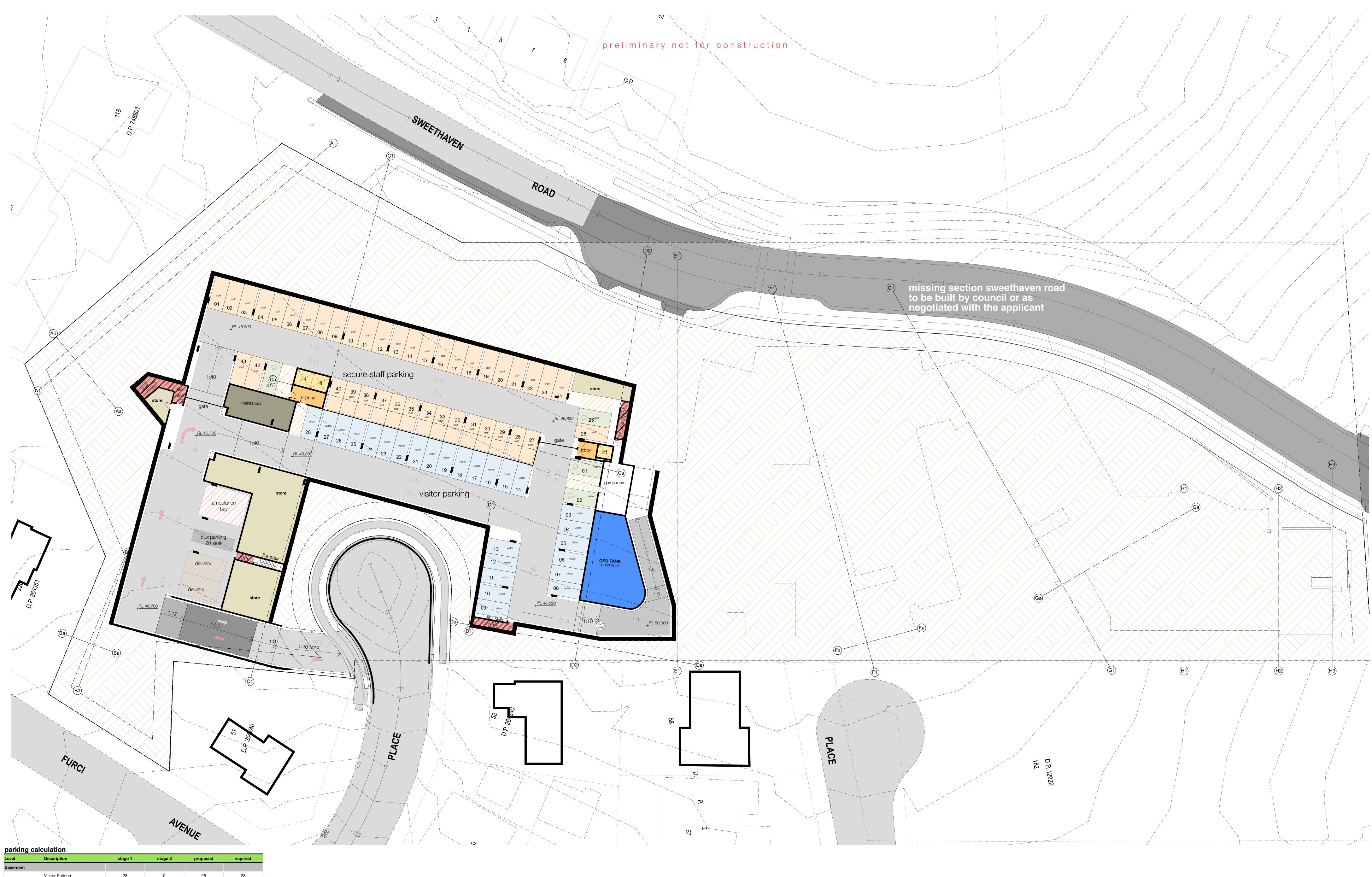
Ref: 610.15583.00200 Table LR3 - TB and TS Results.xlsx

Page 1 of 1

SLR 2 Lincoln Street, Lane Cove, NSW 2066 Australia T: +61 2 9428 8100 <u>sydney@slrconsulting.com</u> <u>www.slrconsulting.com</u>	Stage 2 DSI 610.15583.00200	19-25 Booralla Road, Edensor Park NSW Lot 2 in DP 833184	1 July
---	---------------------------------------	---	--------



Lane Cove, NSW 2066 Australia


Lot 2 in DP 833184

Site Layout

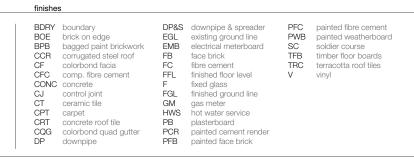
Figure 3 – Test Pit Locations Report Number 610.15583-R3

Appendix A Report Number 610.15583-R3 Page 1 of 1 COPIES OF THE PROPOSED DEVELOPMENT PLANS

<u> </u>					
Level	Description	stage 1	stage 2	proposed	required
Basement					
	Visitor Parking	28	0	28	28
	Secure Staff Parking	43	0	43	38
	Ambulance Parking	1	0	1	1
	Bus parking (20 seat)	1	0	1	0
	Delivery Bays	2	0	2	2

architect

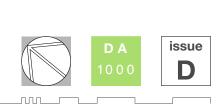
integrated DESIGN group architects bathurst | sydney
 copyright
 sydney
 bathurst

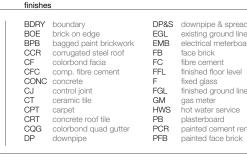

 integratedDESIGNgroup p/l
 t
 02
 9764
 6100
 t
 02
 6332
 6206

 abn 21
 995
 789
 058
 f
 02
 9764
 6111
 f
 02
 6332
 6216

 nominated architects
 f
 02
 9764
 6111
 f
 02
 6332
 6216

 tony mcburney reg#5273
 sydney@idgarchitects.com.au
 bathurst@idgarchitects.com.au
 bathurst@idgarchitects.com.au


general notes 1. figured dimensions take precedence over scaled drawings 2. contractors to check and verify all levels datum and dimensions on site 3. all materials and workmanship to be in accordance with current written manufacturers instructions local regulations and SAA codes 4. conflicting information to be brought to notice of the architect and clarification sought before proceeding with any works 5. all drawings are not for construction and are subject to further design development, consultant input, council and legislative requirements.


date	issue amendment	title	
27/11/15 18/12/15 02/02/16 16/02/16	a issue for consultant coordination b issue for consultant coordination c issue for consultant coordination d issued for DA		nent plan
			KRE14090 dh qc ja st 1:100 @ a0

conflicting information to be brought to notice of the architect and clarification sought before proceeding with any works all drawings are not for construction and are subject to further design development, consultant input, council and legislative requirements.

spreader und line eterboard t r level	PFC PWB SC TFB TRC V	painted fibre cement painted weatherboard soldier course timber floor boards terracotta roof tiles vinyl	b b/head cs dry dw exh fr	basin bulkhead cavity sliding door dryer dishwasher exhaust fan freezer	o/h p ref rh sc sh ss	overhead pantry refrigerator rangehood solid core door soap holder stainless steel sink	wc wm vp uo wm wo	water closet washing machine vent pipe under bench oven water meter wall oven
und line			fw hc	floor waste hollow core door	st shwr	stove	rl ffl	reduced level finished floor level
ervice d nent render e brick			hr lb mw	handrail letterbox mirror microwave	t tr trh typ.	tub towel rail toilet roll holder typical	ssl tow typ	structural slab level top of wall typical

	pi di
	di
	cł
 	S

project ref: KRE14090 drawn: dh | qc | ja checked: st scale: 1:100 @ a0

Appendix B Report Number 610.15583-R3 Page 1 of 1 SAQP

global environmental solutions

Sampling, Analytical and Quality Plan Proposed Stage 2 Detailed Site Investigation 19-25 Booralla Road, Edensor Park NSW

Report Number 610.15583 - R2

3 June 2016

Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust Suite 1, 355 New South Head Road Double Bay, NSW 2023

Version: Revision 0

Sampling, Analytical and Quality Plan Proposed Stage 2 Detailed Site Investigation 19-25 Booralla Road, Edensor Park NSW

PREPARED BY:

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) T: +61 2 9427 8100 F: +61 2 9427 8200 sydney@slrconsulting.com www.slrconsulting.com

> This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust . No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Status	Date	Prepared	Checked	Authorised
Revision 0	3 June 2016	Abanish Nepal	Nalin De Silva	PD=
			•	

Table of Contents

1	INTF	RODUCTION	1
2	BAC	KGROUND	2
	2.1	Site identification	2
	2.2	Project Background	2
	2.3	Review of Preliminary Site Investigation (SLR, 2016)	2
3	OBJ	ECTIVES	3
4	SCC	PE OF WORK	4
5	ARE	AS OF ENVIRONMENTAL CONCERN	5
6	SAM	IPLING, ANALYTICAL AND QUALITY PLAN	7
	6.1	Step 1 – State the Problem	7
	6.2	Step 2 – Identify the Decision	7
	6.3	Step 3 – Identify Inputs to the Decision	7
		6.3.1 Human Health - Direct Contact	8
		6.3.2 Human Health – Inhalation / Vapour Intrusion	8
		6.3.3 Human Health – Asbestos	8
		6.3.4 Petroleum Hydrocarbon Compounds – Management Limits	8
		6.3.5 Aesthetics	9
		6.3.6 Ecological Criteria	10
	6.4	Step 4 – Define the Study Boundaries	10
		6.4.1 Spatial Boundaries	10
		6.4.2 Temporal Boundaries	10
	6.5	Step 5 – Develop a Decision Rule	10
	6.6	Step 6 – Specify Acceptable Limits on Decision Errors	11
	6.7	Step 7 – Optimise the Design for Obtaining Data	13
		6.7.1 Sampling Frequency and Locations	13
		6.7.2 Sampling Methodology	13
		6.7.3 Inaccessible Test Locations	14
		6.7.4 Photographic Records	14
		6.7.5 Location Records	14
		6.7.6 Sample Identification, Storage and Transport Procedures	14
		6.7.7 Laboratory Analysis	15
		6.7.8 Fieldwork Quality Assurance / Quality Control	16
		6.7.9 Laboratory Quality Assurance / Quality Control	17
	6.8	Reporting	18
7	REF	ERENCES	19

Table of Contents

TABLES

Table 1	Areas of Environmental Concern and Contaminant of Potential Concern	6
Table 2	Health Screening Levels for asbestos contamination in soil	8
Table 3	Data Quality Indicators	11
Table 4	Soil Sample Storage and Preservation Requirements	15
Table 5	Laboratory Data Quality Indicators	17
Table 6	Limits of Reporting, Methods and Holding Times	18

FIGURES

Figure	1	Site	Locatio	on Plan
	-			

- Figure 2 Site Layout Plan
- Figure 3 Test Pits Location Plan

APPENDICES

Appendix A Stage 1 PSI (SLR, 2016) Report – text only

1 INTRODUCTION

SLR Consulting Australia Pty Ltd (SLR) was engaged by Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust (the client) to undertake a Stage 2 Detailed Site Investigation (DSI) at the site located at 19-25 Booralla Road, Edensor Park, New South Wales (NSW) (the site).

This report presents a Sampling, Analytical and Quality Plan (SAQP), which includes the relevant background information, proposed sampling strategy, rationale for the sampling and analysis, methodology, and quality assurance and quality control measures applicable for the proposed Stage 2 DSI contamination assessment.

2 BACKGROUND

2.1 Site identification

The site is formerly identified as Lot 2 in DP 833184. The site location and site layout are illustrated on Figure 1 and Figure 2 (attached). The site occupies an area of approximately 1.5Hectares (Ha).

2.2 Project Background

SLR had previously provided a consultancy services to the Client in undertaking a Stage 1 Preliminary Site Investigation (PSI) to assess the potential for contamination to be present at the site and the suitability of the site for the proposed residential aged care facilities. A Stage 1 PSI report (SLR, 2016¹) concluded that the site can be made suitable for the proposed development, subject to the undertaking of a stage 2 DSI, and associated remedial works (if warranted). The Stage 1 PSI (SLR, 2016) report further concluded that the stage 2 DSI should include the assessment of the proposed building footprint area as well as the areas outside of the proposed building footprint.

SLR understands that the Client is proposing to undertake the proposed development work over two stages which will include construction of two – two storey buildings with one level of basement and lower ground floor levels. Excavation of up to 7 metre (m) soil and rock is expected as part of basement construction.

2.3 Review of Preliminary Site Investigation (SLR, 2016)

SLR prepared a Stage 1 Preliminary Site Investigation (PSI) report in 2016. The Stage 1 PSI (SLR, 2016) identified two areas of environmental concerns mainly associated with the agricultural land use in the past and the potential asbestos containing materials observed on site.

The Stage 1 PSI (SLR, 2016) concluded the following:

- The potential for significant widespread contamination to be present on site soils that will be located outside the proposed building footprint, as a result of past and present land use activities, is considered to be low. However, asbestos contamination associated with the current and former sheds was observed on site during the site walkover. The potential for isolated chemical contamination (pesticides etc.) in the vicinity of the former and current sheds cannot be precluded;
- Given the sensitivity of the proposed land use (direct access to site soils), the site in its current condition is not suitable, with respect to contamination, for the proposed land use; and
- It is considered that the site can be made suitable for the proposed development, subject to the
 undertaking of a stage 2 detailed site investigation, and associated remedial works (if warranted).
 The investigation should include the proposed building footprint area as well as the areas outside
 of the proposed building footprint. Based on the nature of contaminants of potential concern
 identified for the site, there are well established means of remediation and/or management that
 could be implemented to allow the proposed development to proceed, regardless of the findings
 of a stage 2 detailed site investigation.

The Stage 1 PSI (SLR, 2016) is attached in Appendix A.

¹ SLR 2016, 'Stage 1 Preliminary Site Investigation, Residential Aged Care Facilities, 19-25 Booralla Road, Edensor Park NSW', Report Number: 610.15583-R1 dated 11 February 2016, Version: Revision 1.

3 OBJECTIVES

The objective of this SAQP is to define an appropriate contamination assessment strategy that would enable to adequately assess the contamination status of the site, with respect to the areas of potential environmental concern identified by the Stage 1 PSI (SLR, 2016) report.

It is important to note that contamination assessments can be iterative – if contamination is identified during the investigation scope of works proposed here, additional assessment may or will be required to further assess the issue and to ascertain the extent of contamination, such that the issue could be appropriately addressed. The scope of such further assessment will be determined by a qualified environmental consultant, and may include additional soil sampling, groundwater well installation and sampling, or even a soil vapour assessment.

This SAQP is based on the findings of the Stage 1 PSI (SLR, 2016) report.

4 SCOPE OF WORK

SLR conducted the following scope of work to prepare this SAQP:

- Review the proposed development plans for the proposed residential aged care;
- Review of the Stage 1 PSI (SLR, 2016) report; and
- Preparation of this SAQP.

5 AREAS OF ENVIRONMENTAL CONCERN

The Stage 1 PSI (SLR, 2016) identified the following in relation to the areas of environmental concern and contaminants of potential concern.

The Table presented below has been extracted from the Stage 1 PSI (SLR, 2016) report.

Table 1 Areas of Environmental Concern and Contaminant of Potential Concern

AEC ID	Source of Contamination	Area of Concern	Chemicals of Concern	Likelihood of Contamination Being Present Currently	Likelihood of Exposure following <u>Proposed</u> <u>Development</u>
AEC01	Agricultural land use in the past	Entire area of the site, but particularly in and around the former sheds.	Pesticides, heavy metals, polychlorinated biphenyls	Low	Likely Contamination that may be present on site soils in areas outside the proposed building footprint could remain on site and be accessible to future site users.
AEC02	Potential asbestos containing material	Former and current shed areas and areas along the western, northern and southern fences	Asbestos	Moderate to High	Likely Contamination that may be present on site soils in areas outside the proposed building footprint is likely to remain on site and be accessible to future site users.

6 SAMPLING, ANALYTICAL AND QUALITY PLAN

Data quality objectives (DQO) for the proposed supplementary contamination assessment have been developed using the seven step process described in

• NSW DEC 2006, Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition).

6.1 Step 1 – State the Problem

The objectives of the proposed Stage 2 DSI are to:

- Assess the contamination status of the site;
- Assess whether potential contamination in the identified areas of environmental concern present an unacceptable exposure risk, based on the adopted land use scenario;
- Assess the likelihood of widespread contamination being present on the site;
- Assess the likelihood of soil contamination that could cause significant impact to the environment; and
- Assess the suitability of the site for the proposed residential aged care land use.

The main problems are:

- How should relevant site media be assessed;
- What sampling layout should be used; and
- What contaminants should be analysed for and by what method to be useful for assessment.

6.2 Step 2 – Identify the Decision

The decisions that need to be made during this project include:

- Is the field and laboratory analytical data suitable for assessing the quality of the media being assessed;
- Does contamination in soils and groundwater on the site present an unacceptable exposure risk for the adopted land use scenario;
- Does contamination in soils on the site present an unacceptable exposure risk for environment; and
- Is the site suitable (in the context of land contamination) for the proposed residential aged care land use in its current condition, or if the site can be made suitable for the proposed land use following remediation.

6.3 Step 3 – Identify Inputs to the Decision

The primary inputs to assessing the above include:

- the Stage 1 PSI (SLR, 2016) report;
- location, distribution and intervals of sampling at the site;
- data collected during the assessment, including field measurements, field observations and laboratory analysis results;
- outcomes of the assessment of the quality of collected data; and
- adopted exposure risk assessment criteria.

Exposure risk assessment criteria will be adopted from:

- National Environment Protection Council (NEPC) 1999, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM), as amended in 2013'.
- Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater, Part 2: Application document, CRC CARE Technical Report No. 10'.

6.3.1 Human Health - Direct Contact

The relevant direct contact:

- Health-Based Investigation Levels (HILs) for residential land use in Table 1A (1) in NEPC (1999); and
- Health Screening Levels (HSL) for residential land use listed in Table B4 of Friebel, E & Nadebaum, P (2011);

are adopted for this assessment.

6.3.2 Human Health – Inhalation / Vapour Intrusion

For the proposed land use exposure scenario, the relevant soil HSL for vapour intrusion listed in Table 1A (3) in NEPC (1999), are adopted for this assessment.

Should evidence of petroleum hydrocarbon contamination be identified in site soils (e.g. significant odours, elevated PID readings), then assessment of soil vapour intrusion risk should be considered (against soil vapour HSLs for vapour intrusion in Table 1A (5) in NEPC (1999)). Additional soil assessment for volatile organic compounds or soil vapour assessment may require to be conducted.

6.3.3 Human Health – Asbestos

NEPC (1999) provides health screening levels for asbestos contamination in soil, which are based on specific land use exposure scenarios, for three forms of asbestos: bonded asbestos containing material (ACM), friable asbestos (FA) and asbestos fines (AF). These health screening levels are provided in Table 2.

Form of asbestos	Health Screening Level (W/W)			
	Residential A	Residential B	Recreational C	Commercial/Industrial
ACM	0.01%	0.04%	0.02%	0.05%
FA and AF		C).001%	
All forms of asbestos		No visible asb	estos in surface soil	

 Table 2
 Health Screening Levels for asbestos contamination in soil

The laboratory method for analysis of asbestos in bulk materials is based on AS 4964-2004. Consequently, a practical quantification limit equal to or less than 0.001% by weight is not adopted and the limit is 0.1g/kg (equivalent to 0.01% w/w). For the purposes of this project, criterion of "no visible asbestos containing materials in surface soils (top 10cm)" and "no asbestos fibres or fines detected in samples using trace analysis techniques" has been adopted as initial screening criteria. If asbestos is identified in site soils, additional assessment may be required to assess the concentrations against the health screening levels for asbestos, specified above.

6.3.4 Petroleum Hydrocarbon Compounds – Management Limits

NEPC (1999) advises that management limits for petroleum hydrocarbon compounds need to be considered to minimise the potential effects of:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in ground services by hydrocarbons.

For the proposed land use exposure scenario, the management limits for residential land use in Table 1 B (7) of NEPC (1999), are adopted for this project. Specific management limits (relevant to soil texture) will be adopted based on field assessment of predominant soil types encountered during intrusive investigations i.e. coarse grain (sands) versus fine grain (silts and clays).

6.3.5 Aesthetics

NEPC (1999) requires that aesthetic quality of accessible soils be considered even if testing suggests that the concentrations of contaminants of concern are within acceptable limits.

No specific numerical guidelines have been assigned for aesthetics. However the NEPM 2013 indicates that professional judgement with regard to quantity, type and distribution of foreign material and/or odours in relation to the specific land use and its sensitivity should be employed.

The following circumstances are considered likely to trigger further aesthetic assessment:

- highly malodorous soils or extracted groundwater (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in soil or extracted groundwater, organo-sulfur compounds);
- hydrocarbon sheen on surface water;
- discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature;
- large monolithic deposits of otherwise low risk material, e.g. gypsum as powder or plasterboard, cement kiln dust, or demolition rubble;
- presence of putrescible refuse including material that may generate hazardous levels of methane; and
- soils containing residue from animal burial.

There are no specific numeric aesthetic guidelines, however site assessment requires balanced

- consideration of the quantity, type and distribution of foreign material or odours in relation to the
- specific land use and its sensitivity. For example, higher expectations for soil quality would apply to residential properties with gardens compared with industrial settings.

General assessment considerations will include:

- that chemically discoloured soils or large quantities of various types of inert refuse particularly if unsightly, may cause ongoing concern to site users;
- the depth of the materials, including chemical residues, in relation to the final surface of the site; and
- the need for, and practicality of, any long-term management of foreign material.

In some cases, documentation of the nature and distribution of the foreign material may be sufficient to address concerns relating to potential land use restrictions.

In arriving at a balanced assessment, the presence of small quantities of non-hazardous inert material and low odour residue (for example, weak petroleum hydrocarbon odours) that will decrease over time will not be a cause of concern or limit the use of a site in most circumstances. Similarly, sites with large quantities of well-covered known inert materials that present no health hazard such as brick fragments and cement wastes (for example, broken cement blocks) will be of low concern for the proposed land use scenario.

However, caution will be applied when assessing large quantities of various fill types and demolition rubble are present.

6.3.6 Ecological Criteria

NEPM 2013 provides assessment criteria applicable for ecological assessment (with regard to terrestrial ecosystems) based on three generic land use exposure scenarios: 1) areas of ecological significance, 2) urban residential areas and public open space and 3) commercial and industrial land uses.

Two sets of criteria have been derived;

- Ecological investigation levels (EILs) for common contaminants of concern; and
- Ecological screening levels (ESLs) for petroleum hydrocarbons.

The assessment criteria applies to contaminants in the top 2m of soil at the finished surface/ground level which corresponds to the root zone and habitation zone of many species.

NEPM 2013 states that a pragmatic, risk based approach should be taken in applying EILs and ESLs in residential and commercial land use settings. Site soils in such areas may have poor structure and drainage, low organic content, limited topsoil depth and a limited ability to support plant growth and micro-organisms. All, or a large proportion of the soil may be removed from the site during development and/or relocated for the formation of new landforms. Commercial/industrial sites may have large building structures and extensive areas covered with concrete and thus have limited environmental values requiring consideration while in operational use.

SLR has taken the above into account and, given the nature of the proposed future land use (low density residential) those EILs and ESLs applicable to the urban residential/public open space exposure scenario have been adopted for the purposes of this assessment.

6.4 Step 4 – Define the Study Boundaries

6.4.1 Spatial Boundaries

The horizontal boundary of the project is defined by the site boundaries, as shown on Figure 2.

The vertical boundary of the project is defined by the depth of potentially impacted material.

6.4.2 Temporal Boundaries

The temporal boundaries of investigation works will be limited by:

- natural daylight working hours; and
- levels of precipitation which, in the opinion of the environmental consultant, prevents adequate visual observations to be made.

6.5 Step 5 – Develop a Decision Rule

The decision rules for the project will be as follows:

- If the results of the laboratory analytical data and field data quality assessment are acceptable (i.e. comply with the procedures, requirements and limits set out in Section 6.6, then the data will be considered suitable for the purposes of the project. Data will be assessed for completeness, comparability, representativeness, precision and accuracy.
- If the results of the laboratory analytical data are within the adopted assessment criteria and fieldwork observations are acceptable, then the level of contamination in the media assessed will be considered an acceptable exposure risk for the proposed land use.
- If the results of laboratory analytical data exceed the adopted assessment criteria or the fieldwork observations are unacceptable, then the level of contamination in the media assessed may require further assessment, management or remediation.

6.6 Step 6 – Specify Acceptable Limits on Decision Errors

There are two types of error:

- deciding that contamination on the site is an acceptable risk for the proposed land use when it is not; and
- deciding that contamination on the site is not an acceptable risk for the proposed land use when it is.

The assessment will aim to conclude with 95% confidence that media in the identified areas of environmental concern do not present an unacceptable risk. Consequently, the 95% upper confidence limit (UCL) statistic will be used to assess the mean concentrations of chemicals of potential concern in soil (where appropriate).

Confidence in the reliability of assessment methods (e.g. field observations, laboratory analysis and data review) will be based on appropriate levels of qualification and/or experience in the personnel undertaking the relevant task.

The data quality indicators set out in Table 3 will be used to assess data for completeness, comparability, representativeness, precision and accuracy.

Completeness	
Field Considerations	Laboratory Considerations
All critical locations sampled	All critical samples analysed in accordance with the data quality objectives
All samples collected (from grid and at depth)	
	All analytes analysed in accordance with the data
SOPs appropriate and complied with	quality objectives
Experienced sampler	Appropriate methods and LORs
Documentation correct	Sample documentation complete
	Sample holding times complied with
Comparability	
Field Considerations	Laboratory Considerations

Table 3Data Quality Indicators

Same SOPs used on each occasion	Sample analytical methods used (including clean-up)
Experienced sampler	Sample LORs (justify/quantify if different)
Climatic conditions	Same laboratories (justify/quantify if different)
(temperature, rainfall, wind)	Same units (justify/quantify if different)
Same types of samples collected (filtered, size fractions)	
Representativeness	
Field Considerations	Laboratory Considerations
Appropriate media sampled in accordance with the data quality objectives All media identified in data quality objectives sampled	All samples analysed in accordance with the data quality objectives
Precision	
	Laboratory Considerations
Precision	Laboratory Considerations Analysis of:
Precision Field Considerations	
Precision Field Considerations	Analysis of:
Precision Field Considerations	Analysis of:Iaboratory and inter-laboratory duplicates
Precision Field Considerations	Analysis of: • laboratory and inter-laboratory duplicates • field duplicates
Precision Field Considerations	Analysis of: • laboratory and inter-laboratory duplicates • field duplicates

Field Considerations

Laboratory Considerations

SOPs appropriate and complied with	Analysis of:
	field blanks
	rinsate blanks
	reagent blanks
	method blanks
	matrix spikes
	matrix spike duplicates
	surrogate spikes
	reference materials
	 laboratory control samples
	laboratory-prepared spikes

6.7 Step 7 – Optimise the Design for Obtaining Data

6.7.1 Sampling Frequency and Locations

The site covers an area of approximately 1.5 Ha. As such, SLR has proposed a total of 25 sampling points to characterise the site. The number of sampling points chosen is in accordance with the numbers outlined in the NSW EPA 1995, 'Contaminated Sites: Sampling Design Guidelines' for a site this size.

The proposed test pit locations are shown on the attached Figure 3 that has been prepared showing the areas of the site that will have accessible soils at the completion of proposed development. However, we note that these locations are approximately only and that they are likely to move due to onsite constraints such as presence of pet enclosures and fences.

6.7.2 Sampling Methodology

Soil samples at the proposed test pit locations are proposed to be collected using the bucket of a small excavator. The sampling methodology is described below.

6.7.2.1 Sampling from the Excavator Bucket

A small excavator will be used to excavate soil/fill material at the proposed test locations, to a depth of approximately 300mm into natural soil, bedrock or a maximum depth of 1.5m, whichever occurs first. Soil samples will be collected by hand (wearing disposable nitrile gloves), from the centre of the excavator bucket to minimise potential for cross contamination.

The excavator bucket will be cleaned using appropriate tools if gross contamination remains on the bucket after the excavation of a particular test pit, though this is considered unlikely.

6.7.2.2 Soil Sampling

Soil samples will be collected from each sampling point at the surface and then at regular depths thereafter, or where there is evidence of contamination or a change in soil lithology. Materials encountered during sampling will be logged in general accordance with the Unified Soil Classification System (UCS).

6.7.2.3 Soil Headspace Screening

Soil samples will be screened in the field for ionisable volatile organic compounds (VOC) using a calibrated photo-ionisation detector (PID) with a 10.6eV lamp. Screening results will be recorded on the relevant log.

6.7.3 Inaccessible Test Locations

Parts of the site are occupied by horses and dogs. It should be appreciated that some of the proposed test locations may not be readily accessible by excavator, without being subjected to the removal of existing fences or agitating the pets on site. In such instances, detailed records will be made regarding the access constraints, ground conditions, potential for the area to have been subjected contamination and the likelihood of contamination. The areas will be photographed and presented in the stage 2 DSI report.

In such instances, the proposed test pit locations will be moved to more accessible locations close to the proposed locations.

6.7.4 Photographic Records

Photographs of the test pits showing the soil profile and other features of interest relevant to the assessment will be taken.

The ground surface conditions within the identified areas of environmental concern will be recorded for assessment.

6.7.5 Location Records

The location of each sample point will be recorded on a site plan relative to existing features on site.

6.7.6 Sample Identification, Storage and Transport Procedures

Samples will be identified using unique sampling point identifiers and sample depth intervals (e.g. TP01/0.0-0.2).

Samples will be placed in laboratory prepared containers and zip lock bags, as appropriate. The sample containers will then be placed directly into an insulated chest containing ice, for transportation to the NATA accredited analytical laboratory with the chain of custody (COC) form recording the following information:

- project job number;
- date of sampling;
- sample identifier;
- sample matrix and container type;
- preservation methods used;
- analysis requirements for each sample;
- turnaround times required for analysis; and

• names and signatures of sender and receiving laboratory.

A copy of the chain of custody will be kept in the job file. Samples will be transported to the laboratory with sufficient time to perform analysis within the applicable holding period.

The proposed sample storage and preservation requirements for the likely contaminants of potential concern are presented in Table 4.

Analyte	Sample Volume and Container Type	Sample Container Preservative	Storage and Transport
TRH C6-C10	1 x 250mL glass	Nil	Ice and insulated container
TRH >C10-C40	1 x 250mL glass	Nil	Ice and insulated container
BTEX	1 x 250mL glass	Nil	Ice and insulated container
VOC/SVOC	1 x 250mL glass	Nil	Ice and insulated container
PAH	1 x 250mL glass	Nil	Ice and insulated container
PCB	1 x 250mL glass	Nil	Ice and insulated container
OCP	1 x 250mL glass	Nil	Ice and insulated container
Metals	1 x 250mL glass	Nil	Ice and insulated container
Asbestos	1 x 50-100g zip lock bag	Nil	Nil

 Table 4
 Soil Sample Storage and Preservation Requirements

6.7.7 Laboratory Analysis

Selected samples will be scheduled for analysis, based on identified contaminants of potential concern for the AEC that the sampling point is located in, field observations and headspace screening results. The proposed analytical suite will comprise of the following contaminants of concern:

- Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn);
- Total petroleum hydrocarbons (TPH);
- Benzene, toluene, ethylbenzene, xylene (BTEX);
- Polyaromatic hydrocarbons (PAH);
- Organochlorine pesticides (OCP);
- Organophosphorous pesticides (OPP);
- Cation exchange capacity (CEC);
- pH;
- % Clay content; and
- Asbestos.

Additional contaminants may be analysed for depending on field observations. For example, if odours are detected or elevated photo-ionisation detector (PID) readings are recorded, the soil samples may be analysed for volatile organic compounds (VOCs).

Based on our extensive experience in testing similar contaminated sites, we consider that the above proposed analytical suite will be sufficient to characterise the soil contamination status at the site.

6.7.8 Fieldwork Quality Assurance / Quality Control

6.7.8.1 Decontamination Procedures

Non-disposable sampling equipment will be decontaminated before and between sampling events to reduce the potential for cross contamination to occur between samples. Decontamination will include the following procedure for re-useable sampling equipment:

- washing non-disposable sampling equipment in a solution of phosphate free detergent (e.g. Decon 90) and potable water; and
- rinsing with distilled water.

6.7.8.2 Intra-laboratory Duplicates

Intra-laboratory field duplicates will be collected on an average frequency of one sample per twenty samples collected (5%), with a minimum of one per batch (excluding samples collected for asbestos analysis). The analytical results of the two spilt samples will be compared to assess the precision of the sampling protocol, and provide an indication of variability in the sample source. The relative percentage difference (RPD) acceptance limits will be:

- No limit analytical results <10 times LOR
- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The RPD exceedances (if any) will be assessed to determine whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.3 Inter-Laboratory Duplicates

Inter-laboratory field duplicates will be collected on an average frequency of one sample per twenty samples collected (5%) with a minimum of one per batch (excluding samples collected for asbestos analysis). The analytical results of the two spilt samples will be compared to assess the precision of the sampling protocol, and provide an indication of variability in the sample source. The relative percentage difference (RPD) acceptance limits will be:

- No limit analytical results <10 times LOR
- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The environmental consultant will assess RPD exceedances (if any) and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.4 Rinsate Samples

A rinsate sample will be collected and analysed for each day of field work carried out, where nondisposable sampling equipment has been used. The rinsate sample will be analysed for generally the same contaminants of potential concern that the samples are being analysed for (excluding asbestos).

The acceptance limit shall be the detected concentrations of the contaminants of concern analysed for in the sample, are less than the applicable LOR. The environmental consultant will assess the significance of the acceptance limit exceedance and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.5 Trip Blanks

Trip blanks will be used and analysed for a batch of samples provided to the laboratory, where the contaminants being analysed for, are volatile in nature (e.g. BTEX or TPH C_6 - C_{10}). The trip blank will be analysed for BTEX.

The acceptance limit shall be the detected concentrations of BTEX in the trip blank, are less than the applicable LOR. The environmental consultant will assess the significance of acceptance limit exceedances and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.6 Trip Spikes

Trip spikes will be used and analysed for a batch of samples provided to the laboratory, where the contaminants being analysed for, are volatile in nature (e.g. BTEX or TPH C_6 - C_{10}). The trip spike will be analysed for BTEX.

The acceptance limit shall be the BTEX recoveries in the trip spike are between 60% and 140%. The environmental consultant will assess the significance of acceptance limit exceedances and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.9 Laboratory Quality Assurance / Quality Control

6.7.9.1 Laboratory Selection

The primary and secondary laboratories used for this project will be NATA-accredited for the analyses being undertaken.

6.7.9.2 Laboratory Data Quality Indicators

The laboratory data quality will be assessed by checking the following:

- laboratory methods used are NATA accredited;
- laboratory limits of reporting are less than adopted assessment criteria;
- samples are extracted and analysed within holding times; and
- results of method blanks, surrogate, lab control sample, spike recoveries relative percentage differences (RPDs) between primary and duplicate laboratory samples.

Data Quality Indicators (DQI) that will be adopted for quality control samples are presented in Table 5.

Table 5 Laboratory Data Quality Indicators

Type of Quality Control Sample	Control L	imit
Method Blank	Analytical result < LOR	
Surrogate % Recovery	50% - %1	50%
Labe Control Sample % Recovery	70% - 130%	
Spike % Recovery	70% - 130% for inorganics 60% - 140% for organics	
RPD	No limit 50% 30%	Analytical results <10 times LOR Analytical results 10-20 times LOR Analytical results >20 times LOR

Should the results of a laboratory quality control sample exceed the relevant adopted control limit, the laboratory will be requested assess the significance of the exceedance on the quality of the laboratory analytical data for the relevant batch. The environmental consultant will assess the significance of the control limit exceedance and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.9.3 Laboratory Limits of Reporting, Analytical Methods and Holding Times

Laboratory limits of reporting, analytical methods and holding times are presented in Table 6.

Analyte	Limit of Reporting (mg/kg)	Method	Holding Time
BTEX and TRH C6-C10	0.2-0.5	USEPA 5030, 8260B and 8020	14 days
TRH >C10-C40	20-100	USEPA 8015B & C	14 days
РАН	0.1-0.2	USEPA 8270	14 days
VOC	0.1-0.5mg/kg	USEPA8260	14 days
OCP	0.2	USEPA 8081	14 days
PCB	0.2	USEPA 8270	14 days
Metals	1	USEPA 200	6 months
OCP	0.2	USEPA 8081	14 days
Asbestos	Presence / Absence	AS4964:2004	No limit

Table 6 Limits of Reporting, Methods and Holding Times

6.8 Reporting

A stage 2 DSI report will be prepared in accordance with the relevant sections of NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites', and will include the following:

- Executive summary;
- Scope of work;
- Site identification;
- Site history summary;
- Site condition and surrounding environment summary;
- Information on geology and hydrogeology;
- Field and laboratory analytical data;
- Field and laboratory data QA/QC assessment;
- Site characterisation; and
- Conclusions and recommendations.

7 REFERENCES

- SLR 2016, 'Stage 1 Preliminary Site Investigation, Residential Aged Care Facilities, 19-25 Booralla Road, Edensor Park NSW', Report Number: 610.15583-R1 dated 11 February 2016, Version: Revision 1
- Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 2: Application document', CAC CARE Technical Report No. 10
- National Environment Protection Council (NEPC) 1999a, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.
- National Environment Protection Council (NEPC) 1999b, 'Schedule B(2) Guideline on Site Characterisation, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.
- NSW DEC 2006, 'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition)'.
- NSW DEC 2007, 'Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination
- NSW EPA 1994, 'Contaminated Sites: Guidelines for Assessing Service Station Sites'
- NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites'.

Appendix C Report Number 610.15583-R3 Page 1 of 1 TEST PIT LOGS

S			utions	2 Lir Lane Tele	ncoln S e Cove ephone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP01 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 583.00200			Road, Edensor Park
DA EX	TE S CAV	STAR	red _ N Cor	20/6/ [.]	16 CTOR	COMPLETED 20/6/16 Ken Coles	R.L. SURFACE SLOPE	rded	DATUM BEARING
ТΕ	ST P	IT SIZ				55	LOGGED BY AN		
Method	Water		Depth (m)	ohic Log	Classification Symbol	Material Descriptio		Samples Tests Remarks	Additional Observations
We				G	CH	FILL: CLAY, low plasticity, dark grey with trace s 5-20mm, trace asphalt, moist to wet, soft, no odo CLAY low to medium plasticity, orange brown, fir Test Pit TP01 terminated at 0.7m	ur.	PID = 0.0ppm	TP01/0m - 0.2m water seeping at 0.25m TP01/0.4m - 0.6m

S	SL al enviro		lutions	2 Lir Lane Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP02 PAGE 1 OF 7
				ca Ver	ntures	Pty Ltd ATF Edensor Lands Trust 583.00200			
DA EX EC	ATE S (CAV QUIP	STAR /ATIO MENT	TED _ N CO YA	20/6/ NTRAC	16 CTOR 1 VIC 5	COMPLETED _20/6/16 _Ken Coles	R.L. SURFACEnot recordsciences	rded	DATUM BEARING
	DTES		1					1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
			0.5		СН	FILL: CLAY, low plasticity, dark grey with trace soft, no odour. CLAY: low to medium plasticity, red brown, firm, Test Pit TP02 terminated at 0.6m	-	PID = 0.0ppm	TP02/0.2m - 0.4m
			0.5			Test Pit TP02 terminated at 0.6m			

-				2 Lir Lane Tele Fax:	ncoln S e Cove phone 02 94	ulting Australia Pty Ltd Street e NSW 2066 a: 02 9428 8100 428 8200			PIT NUMBER TP03 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 583.00200			
						COMPLETED _20/6/16			
						Ken Coles			
						55			
		11 SI2					LOGGED BY AN		CHECKED BY NDS/AN
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
						FILL: CLAY, low plasticity, dark grey with trace s charcoal, moist, soft, no odour.		PID = 0.0ppm	TP02/0m - 0.2m
			_		СН	CLAY: low to medium plasticity, orange brown, f	irm to stiff, moist, no odour.	PID = 0.0ppm	TP02/0.2m - 0.4m
			0.5			Test Pit TP03 terminated at 0.5m			
			1.0						

Interventional location Fax. ² 02 9428 8200 CLIEN_Melaleuca Ventures Pty Ltd ATF Edensor Lands Trust PROJECT NAME_Stage 2 DSI PROJECT NUMBER_610.15583.00200 PROJECT LOCATION _19-25 Booralla Road, Edensor Date strakteD_20/6/16 COMPLETED_20/6/16 R.L. SURFACE_not recorded DATUM EXCAVATION CONTRACTOR_Ken Coles SLOPE BEARING EQUIPMENT_YANIMAR VIC 55 TEST PIT LOCATION CHECKED BY NOTES NOTES CHECKED BY AN Ofg. Org. Org. Samples Tests NOTES Samples Tests Remarks Addition Org. Org. Org. Samples Tests Remarks VOTES FILLTOPSOIL: CLAY, low plasticity, dark grey, trace shale, moist, soft, no TP04/0.05m - Odour. TP04/0.05m - Org. Ociour changes to red brown, stiff. PID = 0.0ppm Water seeping Vater seeping	Park
DATE STARTED 20/6/16 COMPLETED 20/6/16 R.L. SURFACE not recorded DATUM EXCAVATION CONTRACTOR Ken Coles SLOPE BEARING EQUIPMENT YANMAR VIC 55 TEST PIT LOCATION	- / <u>NDS/AN</u> nal Observations
EXCAVATION CONTRACTOR Ken Coles SLOPE BEARING EQUIPMENT YANMAR VIC 55 TEST PIT LOCATION TEST PIT SIZE LOGGED BY AN CHECKED BY NOTES NOTES Image: Stress of the stress of th	
TEST PIT SIZE LOGGED BY _AN CHECKED BY _NOTES	nal Observations
NOTES Image: Notes of the second se	nal Observations
Image: Second	
CH CLAY: low to medium plasticity, yellow orange, moist, firm, no odour. PID = 0.0ppm colour changes to red brown, stiff.	0.25m
	at 0.3m

S			lutions	2 Lii Lan Tele	ncoln S e Cove ephone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP05 PAGE 1 OF 1
				ca Vei	ntures	Pty Ltd ATF Edensor Lands Trust			Deed Edenser Dedr
DA	TE S	STAR	TED _	20/6/	16	COMPLETED _20/6/16	R.L. SURFACE _ not reco	rded	DATUM
						Ken Coles			
						1		1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	ion	Samples Tests Remarks	Additional Observations
				<u>x1 1/</u> <u>x</u> 1/ <u>x1 1/</u>		TOPSOIL: low plasticity, dark grey, moist, soft,	no odour.		
					СН	CLAY: low to medium plasticity, red orange bro	wn, moist, firm, no odour.		TP05/0.05m - 0.25m
			_						
								PID = 0.0ppm	
			_						
			_						
			-						
			0 <u>.5</u>						
11/0/07									
۹.GU						Test Pit TP05 terminated at 0.6m		_	
1 KALI									
ID AUG									
			-						
149.									
			-						
700.000									
			-						
YEHOL YEHOL									
			1.0						

S			lutions	Lane Tele	e Cove	ulting Australia Pty Ltd Street 9 NSW 2066 9: 02 9428 8100 428 8200		TESTI	PIT NUMBER TP06 PAGE 1 OF 1
				ca Ver	ntures	Pty Ltd ATF Edensor Lands Trust			
PR	OJE		UMBE	R _ 6′	10.155	83.00200	PROJECT LOCATION _1	9-25 Booralla R	oad, Edensor Park
						COMPLETED _20/6/16			
						Ken Coles			
						55			
			ZE				LOGGED BY AN	(CHECKED BY NDS/AN
		, <u> </u>							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations
						CLAY: low to medium plasticity, red-brown, mois	t, firm, no odour.		TP06/0m - 0.2m
BOREHOLE / TEST PIT 610.15583.00200 TEST PITS.GPJ GINT STD AUSTRALIA.GDT 28/6/16			- - 0 <u>.5</u>			becoming stiff		PID = 0.0ppm	
SALIA.6						Test Pit TP06 terminated at 0.6m			
AUSTF									
SINI SIL			-						
.GPJ 6									
I PI IS									
0 IES			_						
00200									
race!									
610.									
			-						
HOLE									
ROK			1.0						

S			lutions	2 Lir Lane Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street 9 NSW 2066 9: 02 9428 8100 428 8200		TEST	PIT NUMBER TP07 PAGE 1 OF 1
				ca Ver	ntures	Pty Ltd ATF Edensor Lands Trust 83.00200			
DA	TE S	STAR	red _	20/6/	16	COMPLETED _ 20/6/16	R.L. SURFACE not reco	rded	DATUM
						Ken Coles			
						55			
		PIT SIZ					LOGGED BY AN		CHECKED BY NDS/AN
Method	Water		Depth (m)	hic Log	Classification Symbol	Material Descript	on	Samples Tests Remarks	Additional Observations
			(m) 		CH	CLAY: low to medium plasticity, red brown, moi becoming stiff Test Pit TP07 terminated at 0.6m	st, firm, no odour.	PID = 0.0ppm	TP07/0m - 0.2m
			1.0						

S	al enviror		lutions	2 Lir Lane Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street 9 NSW 2066 9: 02 9428 8100 428 8200		TEST	PIT NUMBER TP08 PAGE 1 OF 1
				ca Ver	ntures	Pty Ltd ATF Edensor Lands Trust 83.00200			
DA	TE S	STAR	TED _	20/6/	16	COMPLETED _20/6/16	R.L. SURFACE not recor	ded	DATUM
EG TE	QUIPI ST F	MENT	' <u>YA</u> Ze	NMAF	VIC 5	5	TEST PIT LOCATION		
Method	Water		Depth (m)	ohic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
	<u>≤</u>		(m)			TOPSOIL: low plasticity, dark grey, moist, soft, r CLAY: low to medium plasticity, red brown, moi becoming stiff Test Pit TP08 terminated at 0.6m		PID = 0.0ppm	TP08/0.05m - 0.25m

S			utions	2 Lir Lane Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP09 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 883.00200			
						COMPLETED 20/6/16			
						Ken Coles			
						55			
		11 SI2					LOGGED BY AN		CHECKED BY <u>NDS/AN</u>
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptic	n	Samples Tests Remarks	Additional Observations
_	-	(11)	(11)		0 0	FILL: TOPSOIL/CLAY, low plasticity, grey brown soft, no odour.	, trace shale gravels, moist,		TP09/0m - 0.2m
			_		СН	CLAY: low to medium plasticity, grey orange, firm	n, moist, no odour.	PID = 0.0ppm	 TP09/0.2m - 0.4m
			_					PID = 0.0ppm	
			0.5						
						Test Pit TP09 terminated at 0.5m			

S	environ		lutions	2 Lir Lane Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP10 PAGE 1 OF 1
CLI	ENT	Me	elaleu	ca Ver	ntures	Pty Ltd ATF Edensor Lands Trust			
PR	OJE	CT NI	JMBE	R _6′	10.155	683.00200	PROJECT LOCATION _	19-25 Booralla F	Road, Edensor Park
						COMPLETED 20/6/16			
						Ken Coles			
						55			
	ST P TES		<u>'E</u>				LOGGED BY AN		CHECKED BY NDS/AN
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
		. ,				FILL: CLAY, medium plasticity, orange brown, t odour.	race shale gravels, soft, no		TP10/0m - 0.2m
			-					PID = 0.0ppm	
			- 0 <u>.5</u> -		СН	CLAY: low to medium plasticity, grey brown with no odour. Test Pit TP10 terminated at 0.9m	orange mottling, firm, moist,	PID = 0.0ppm	TP10/0.6m - 0.8m
			1 <u>.0</u> - - 1.5						

S			utions	2 Lii Lan Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP11 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 883.00200			Road, Edensor Park
EX	CAV	ATIO		NTRA	CTOR	COMPLETED 20/6/16 Ken Coles	R.L. SURFACE		BEARING
ТΕ	ST P	IT SIZ				55			
NC	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio		Samples Tests Remarks	Additional Observations
			0. <u>5</u>		СН	FILL: CLAY, low to medium plasticity, orange gre to soft, no odour. CLAY: low to medium plasticity, orange with grey odour. Test Pit TP11 terminated at 0.7m		PID = 0.0ppm	TP11/0m - 0.2m

PAGE 1 OF 1	PIT NUMBEI PA	TEST			ulting Australia Pty Ltd Street 9 NSW 2066 9 02 9428 8100 428 8200	icoln S e Cove phone	2 Lir Lane Tele	utions		environ	S
			PROJECT NAME Stage								
	DATUM BEARING	rded	R.L. SURFACE SLOPE TEST PIT LOCATION	20/6/16	COMPLETED Ken Coles	16 CTOR	20/6/ [/]	ED_	START ATIO	TE S CAV	DA [®] EX
NDS/AN	HECKED BY NDS		LOGGED BY AN					Έ			
al Observations	Additional Obse	Samples Tests Remarks		Material Descripti		Classification Symbol	ohic Log	Depth (m)		Water	Method
	TP12/0.05m - 0.25m water seeping at 0.2m	PID = 0.0ppm		asticity, red brown, mois	TOPSOIL: low plasticity, of CLAY: low to medium plasticity of the second			(m) - - - - - -			
				at 0.6m	Test Pit TP12 terminated			0.5			

S			utions	2 Lii Lan Tele	ncoln S e Cove ephone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP13 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 883.00200			
						COMPLETED _20/6/16			
						Ken Coles			
						55			
TE	ST P	PIT SIZ	'E				LOGGED BY AN		CHECKED BY NDS/AN
NC	TES					1		1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
Met	Wat		Depth (m)		CH	FILL: CLAY, dark grey brown, with aggregates, 5-30mm, trace charcoal, moist, soft, no odour. CLAY: low to medium plasticity, red orange brow Test Pit TP13 terminated at 0.7m		PID = 0.0ppm	TP13/0m - 0.2m

		R nmental so		2 Lir Lane Tele Fax:	ncoln S e Cove phone 02 94	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200 Pty Ltd ATF Edensor Lands Trust		ge 2 DSI	PIT NUMBER TP14 PAGE 1 OF 1
PR	OJE		JMBE	R _ 61	10.155	583.00200	PROJECT LOCATION	19-25 Booralla I	Road, Edensor Park
						COMPLETED 20/6/16			
						Ken Coles			
						55			
			ZE				LOGGED BY AN		CHECKED BY NDS/AN
NO	TES	<u> </u>							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
Me	Wa		0. <u>5</u>		CH	FILL: CLAY, low plasticity, dark grey brown, sha moist, soft, no odour.		PID = 0.0ppm	TP14/0m - 0.2m
			1.0						

SL global envi				2 Lir Lane Tele Fax:	ncoln S e Cove phone 02 94	≥ NSW 2066 ±: 02 9428 8100 428 8200			PIT NUMBER TP15 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 83.00200			
						COMPLETED 20/6/16 Ken Coles			
						55			
NOTE	s _					1		1	
Method Water			Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
		n)			CH	FILL: CLAY, low to medium plasticity, orange bi plastics, ceramics and trace subangular shale gr CLAY: medium plasticity, brown with grey mottli Test Pit TP15 terminated at 0.8m	avels, moist, soft, ño odour.	PID = 0.0ppm	TP15/0m - 0.2m, DUP01, DUP01A

S			lutions	Lan Tele	e Cove ephone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200	TEST PIT NUMBER TP16 PAGE 1 OF 1			
				ca Vei	ntures	Pty Ltd ATF Edensor Lands Trust 83.00200			Pood Edonoor Pork	
DA EX	TE S	star ⁻ /atio	TED _ N COI	20/6/	16 CTOR	COMPLETED _20/6/16 Ken Coles	_ R.L. SURFACE 	orded	DATUM	
TE	ST F	PIT SIZ	ZE			55	LOGGED BY AN			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	ion	Samples Tests Remarks	Additional Observations	
					СН	CLAY: low to medium plasticity, grey brown, mo colour changes to red brown, stiff.	ist, soft, no odour.	PID = 0.0ppm	TP16/0m - 0.2m	

S			lutions	Lan Tele	e Cove ephone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP17 PAGE 1 OF 1
				ca Vei	ntures	Pty Ltd ATF Edensor Lands Trust			
PR	OJE		UMBE	R _6'	10.155	83.00200	PROJECT LOCATION _1	9-25 Booralla R	oad, Edensor Park
						COMPLETED 20/6/16			
						Ken Coles			
						55			
		PIT SIZ					LOGGED BY AN		CHECKED BY NDS/AN
		·							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations
					СН	CLAY: low to medium plasticity, red brown, mois	st, firm, no odour.		TP17/0m - 0.2m
			_					PID = 0.0ppm	
			-						1
			_						
			-						
			0 <u>.5</u>						
0/16									
28/6									
A.GU	$\left \right $					Test Pit TP17 terminated at 0.6m			
IKAL									
AUS									
T STL									
U GIV			-	1					
S.GP									
L L L									
1E			-						
3.002									
0.1558									
1 61(
L L			-						
H									
BOREHOLE / TEST PIT 610.15583.00200 TEST PITS.GPJ GINT STD AUSTRALIA GDT 28/6/16									
BOR			1.0						

S	I al enviror		Nutions	2 Lii Lan Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP18 PAGE 1 OF 1
				ca Ve	ntures	Pty Ltd ATF Edensor Lands Trust			
						83.00200			
						COMPLETED 20/6/16 Ken Coles			
EQ	UIP	MENT	YA	NMAF	NIC 5	55	TEST PIT LOCATION		
		PIT SIZ							CHECKED BY NDS/AN
Method	Water		Depth (m)	ohic Log	Classification Symbol	Material Descript		Samples Tests Remarks	Additional Observations
	-	()	()	<u> </u>		TOPSOIL: low plasticity, dark grey brown, trace	shale, moist, soft, no odour.		TP18/0m - 0.2m
			-		СН	CLAY: low to medium plasticity, orange grey wi	h brown mottling, moist, firm,	PID = 0.0ppm	 TP18/0.2m - 0.4m
			-		Сн	CLAY: low to medium plasticity, orange grey wi no odour.	in drown mottling, moist, tirm,	PID = 0.0ppm	TP18/0.2m - 0.4m
01/0/07 1/00-			0 <u>.5</u>			Test Pit TP18 terminated at 0.6m			

S			lutions	2 Lir Lane Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street NSW 2066 1: 02 9428 8100 428 8200		TEST	PIT NUMBER TP19 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 83.00200			Road Edensor Park
						COMPLETED _20/6/16			
						Ken Coles			
EQ	UIP	MENT	YA	NMAF	VIC 5	55	TEST PIT LOCATION		
			ZE				LOGGED BY _AN		CHECKED BY NDS/AN
NO	TES	;							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
						CLAY: low to medium plasticity, dark grey brown	n, moist, firm, no odour.		TP19/0m - 0.2m
			-					PID = 0.0ppm	
			-						
			-						
			-						
			0 <u>.5</u>						
8/6/16									
3DT 2									
ALIA.6						Test Pit TP19 terminated at 0.6m			
USTR									
STD A									
GINT			-						
GPJ									
PITS.									
BOREHOLE / TEST PIT 610.15583.00200 TEST PITS.GPJ GINT STD AUSTRALIA.GDT 28/6/16									
00200									
15583.									
610.1									
ST PIT			-						
:/ TES									
HOLE									
BORE			1.0						

SLR global environmental s	colutions	2 Lir Lane Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street NSW 2066 2: 02 9428 8100 428 8200		TEST	PIT NUMBER TP20 PAGE 1 OF 1
				Pty Ltd ATF Edensor Lands Trust 883.00200			
				COMPLETED 20/6/16			
				Ken Coles			
				55			
NOTES							
Method Water (W)		Graphic Log	Classification Symbol	Material Descriptic	n	Samples Tests Remarks	Additional Observations
And the second s			CH	FILL: Gravelly CLAY, grey brown, concrete, brick fragments, trace sand, moist, soft, no odour.		PID = 0.0ppm	TP20/0m - 0.2m, TP20/PACM

_		R Inmental sol		2 Lii Lan Tele Fax:	ncoln S e Cove ephone : 02 94	e NSW 2066 ∋: 02 9428 8100 428 8200	TEST PIT NUMBER TP21 PAGE 1 OF 1 PROJECT NAME Stage 2 DSI PROJECT LOCATION 19-25 Booralla Road, Edensor Park			
PF	ROJE	CT NI	JMBE	R _6'	10.155	83.00200	PROJECT LOCATION _1	9-25 Booralla I	Road, Edensor Park	
DA	ATE S	STAR	ED _	20/6/	16	COMPLETED 20/6/16	R.L. SURFACE not recor	ded	DATUM	
EX	CAV	ATIO		ITRA	CTOR	Ken Coles	SLOPE		BEARING	
							TEST PIT LOCATION			
TE	ST P	PIT SIZ	Έ				LOGGED BY AN		CHECKED BY NDS/AN	
NC	DTES					I		[
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations	
				<u>× 1</u> × .		TOPSOIL: low plasticity, dark grey, moist, soft, r	no odour.		TP21/0m - 0.2m	
			-		СН	CLAY: low to medium plasticity, orange brown, n		PID = 0.0ppm PID = 0.0ppm	TP21/0.3m - 0.5m	
						Test Pit TP21 terminated at 0.7m				

S			elutions	Lan Tele	e Cove	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP22 PAGE 1 OF 1
				ca Vei	ntures	Pty Ltd ATF Edensor Lands Trust			
						83.00200			
						COMPLETED 20/6/16 Ken Coles			
						55			
NO	TES	;	1			1			1
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
					СН	CLAY: low to medium plasticity, orange brown,	noist, firm to stiff, no odour.		TP22/0m - 0.2m
			-					PID = 0.0ppm	
			-						-
			_						
			-						
			0.5			Test Pit TP22 terminated at 0.5m			
0									
0/07									
DD.A.			-						
			-						
Ö									
			_						
.00200									
1000									
			-	1					
- CLE / -									
BUREHULE / 1591 711 010.13985.00200 1591 7115.6719 GINI 510 AUSTRALIA.601 260719			1.0						
			1.0					1	

S		R	utions	2 Lii Lan Tele	ncoln S e Cove phone	ulting Australia Pty Ltd Street e NSW 2066 e: 02 9428 8100 428 8200		TEST	PIT NUMBER TP23 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 83.00200			Road, Edensor Park
						COMPLETED _20/6/16			
						Ken Coles			
						55			
	ST P TES		Έ				LOGGED BY AN		CHECKED BY NDS/AN
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations
				<u>x'''z</u> . <u>.</u>		TOPSOIL: low plasticity, dark grey, trace subang moist, soft, no odour.	gular (5-30mm) shale gravels,		TP23/0m - 0.2m
				<u>\\</u>					
				<u>1, 1,</u>					
			-					PID = 0.0ppm	
	–		-	<u>1</u>					water seeping at 0.2m
				<u> \. /</u>					
				<u>1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/</u>					
			_		СН	CLAY: low to medium plasticity, red brown, firm to	o stiff, moist, no odour.		 TP23/0.3m - 0.5m
			_					PID = 0.0ppm	
			0 <u>.5</u>						
						Test Pit TP23 terminated at 0.6m			
			_						
			-						
			_						
			1.0						

CL	IENT		elaleu	2 Lii Lan Tele Fax: ca Vei	ncoln S e Cove phone : 02 94 ntures	ulting Australia Pty Ltd Street NSW 2066 2: 02 9428 8100 428 8200 Pty Ltd ATF Edensor Lands Trust 83.00200			
DA	TE S	STAR	TED	20/6/	16	COMPLETED 20/6/16	R.L. SURFACE _ not reco	rded	DATUM
						Ken Coles			
EQ	UIP	MENT	YA	NMAF	R VIC 5	55	TEST PIT LOCATION		
TE	ST P	PIT SIZ	ZE				LOGGED BY AN		CHECKED BY NDS/AN
NO	TES	;	1					1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
	Ma Na		0. <u>5</u>			TOPSOIL: low plasticity, dark grey, trace shale s moist, soft, no odour.		PID = 0.0ppm	TP24/0.2m - 0.4m water seeping at 0.2m
BOREHOLE			1.0						

				2 Lii Lan Tele Fax:	ncoln S e Cove ephone : 02 9	e NSW 2066 ∋: 02 9428 8100 428 8200			PIT NUMBER TP25 PAGE 1 OF 1
						Pty Ltd ATF Edensor Lands Trust 883.00200			
DA	TE S	STAR	red _	20/6/	16	COMPLETED 20/6/16	R.L. SURFACE not recor	ded	DATUM
						Ken Coles			
						55			
	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti		Samples Tests Remarks	Additional Observations
			_			FILL: Gravelly CLAY, low plasticity, dark grey, ro ash, trace sand, moist, soft, no odour.	oof tiles, bricks, concrete, trace	PID = 0.0ppm	TP25/0m - 0.2m
			-			ASH FILL: Gravelly CLAY, low plasticity, dark grey, ro ash, trace sand, moist, soft, no odour.			
			- 0 <u>.5</u>		СН	CLAY: low to medium plasticity, red brown, mois	st, firm, no odour.	PID = 0.0ppm	TP25/0.4m - 0.6m, DUP03, DUP03A
						Test Pit TP25 terminated at 0.7m			

Appendix D Report Number 610.15583-R3 Page 1 of 1 LABORATORY CERTIFICATES

SGS				C	HA	IN C	DF C	UST	ODY	&	AN	NAL	.YS	IS F	REQ	UEST					Page1 of _5
SGS Environmental S	ervices	Compar	iy Nam	e:	SLR (Consu	Ilting							Proj	ect Na	me/No:	610.	15583	.00200) – Ed	ensor Park
Unit 16, 33 Maddox St	treet	Address	:		2 Lind	coln S	treet							Purc	hase (Order No:	SGS	5 PO 2	1055;	Eurofi	ns PO 21056
Alexandria NSW 2015					Lane	Cove	NSW	2066						Res	ults Re	quired By:	Stan	dard			
Telephone No: (02) 85														Tele	phone		0448	3 178 9	915		
Facsimile No: (02) 85	5940499	Contact	Name:		Abani	ish Ne	epal							Face	simile:		02 9	427 82	200		
Email: au.samplereceipt.sy	dney@sgs.com													Ema	il Resu	ults:	aner	oal@sl	rcons	ulting	.com ndesilva@slrconsulting.com
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	PAH/METALS	Asbestos (Presence / Absence)	TRH/RTFX/PAH/Metals	/OCP/OPP/PCB	% CLAY	CEC	Н		НОГД						Notes
TP01/0.0-0.2	20-6-16	1		X	Ice	2		X	X												
TP01/0.4-0.6	20-6-16			X	Ice	2									X			60	' 0 Ale:	' ''''''''''''''''''''''''''''''''''''	1. F
TP02/0.0-0.2	20-6-16	2		X	Ice	2	X	X			X	X	X					Su:	5 ATE)		ia Environmental
TP02/0.2-0.4	20-6-16			X	Ice	2									X						
TP03/0.0-0.2	20-6-16	3		Х	Ice	2		X	X								-				
TP03/0.2-0.4	20-6-16			X	Ice	2									X		+	SI	E15	386	
TP04/0.05-0.25	20-6-16	4		X	Ice	2	x	X									+	Rec	eived	: 21-	-Jun - 2015
TP05/0.05-0.25	20-6-16	5		X	Ice	2	x	X		1							+	1	1	1	
TP06/0.0-0.2	20-6-16	6		X	Ice	2	X	X		-											*
TP07/0.0-0.2	20-6-16	7		Х	Ice	2		X	X												
Relinquished By: Abanish	Nepal	Dat	e/Time	e: 21/0	06/201	6 14.	10	ll		Re	eceiv	ed By	ι: <u>Δ</u>	C	elisi	26		⊥ Date/⊺	ime	21/1	ollo @ 3.30m
Relinquished By: Abanish	Nepal	Dat	e/Time	: 21/0	06/201	6 14.	10			Re	eceiv	ed By	r:					Date/T		/×	one company
Samples Intact: (es) No)	Ten	nperati	ure:	Ambie	nt / C	hilled			Sa	mple	e Coo	ler Se	ealed:	Yes	No		Labora	atory (Quotat	tion No: SLR Pricing 2015
		Cor	nment	s: Me	thods	and d	etectio	on limits t	to suit l	VEPI	M 20)13					1	Labora	atory (Quotat	tion No:

SGS				С	HA	IN C	OF C	CUST	ODY	&	AN	NAL	.YS	IS F	REQ	UEST					Pag	e2_	of	5
SGS Environmental S	ervices	Compan	y Nam	e:	SLR	Consu	lting							Proje	ect Nar	ne/No:	610.	15583	.00200) – Ed	ensor P	ark		
Unit 16, 33 Maddox St	reet	Address	:	-	2 Lind	coln S	treet							Purc	hase (Order No:	SGS	5 PO 2	1055;	Eurofi	ns PO 2	21056		
Alexandria NSW 2015				-	Lane	Cove	NSW	2066						Resi	ults Re	quired By:	Star	dard						
Telephone No: (02) 85	940400			-										Tele	phone:		0448	3 178 9	915					
Facsimile No: (02) 85	5940499	Contact	Name:		Aban	ish Ne	pal							Facs	imile:		02 9	427 82	200					
Email: au.samplereceipt.sy	dney@sgs.com													Ema	il Resu	ilts:	aner	oal@sl	rcons	ulting	.com n	desilva(@slrcor	sulting.com
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	PAH/METALS	Asbestos (Presence / Absence)	TRH/BTEX/PAH/Metals	/OCP/OPP/PCB	% CLAY	CEC	HA		НОГР								Notes	
TP08/0.05-0.25	20-6-16	8		X	Ice	2	X	X																
TP09/0.0-0.2	20-6-16	9		X	lce	2	x	X																
TP09/0.2-0.4	20-6-16	10		X	Ice	2	x	X																
TP10/0.0-0.2	20-6-16	11		X	Ice	2	X	X																
TP10/0.6-0.8	20-6-16			Х	Ice	2									X									
TP11/0.0-0.2	20-6-16	12		х	Ice	2		X	X		Х	Х	X		1									
TP11/0.4-0.6	20-6-16			Х	Ice	2									X									
TP12/0.05-0.25	20-6-16	13		Х	Ice	2	X	X																
TP13/0.0-0.2	20-6-16	14		Х	Ice	2	X	X																
TP13/0.3-0.5	20-6-16			Х	Ice	2									X									
Relinquished By: Abanish	Nepal	Dat	e/Time	e: 21/0	06/201	6 14.	10	I		Re	eceiv	ed By	A	. 0	clis	no		Date/T	ime	21/	6118	a	2	. 201
Relinquished By: Abanish	Nepal	Dat	e/Time	e: 21/0	06/201	6 14.	10					ed By						Date/T	ime					
Samples Intact: Yes / No)	Ten	nperat	ure:	Ambie	nt / C	hilled			Sa	ample	e Coo	ler Se	ealed:	Yes	'No		Labora	atory (Quotat	ion No:	SLR F	Pricing	2015
		Cor	nment	s: Me	thods	and d	etectio	on limits t	to suit N	NEP	PM 20)13						Labora	atory (Quotat	ion No:	:		

SGS				C	HA	IN C	OF C	CUSTO	DDY	&	A	NAL	.YS	IS F	REQ	UEST					Pag	e3_	_ of _	5
SGS Environmental S	ervices	Compan	y Nam	e:	SLR	Consu	Ilting							Proje	ect Nar	me/No:	61	0.1558	3.0020	0 – Ed	ensor F	Park		
Unit 16, 33 Maddox St	reet	Address	:		2 Line	coln S	treet							Purc	hase (Order No:	SC	S PO	21055;	Eurofi	ns PO	21056		
Alexandria NSW 2015					Lane	Cove	NSW	2066						Resu	Its Re	quired By:	Sta	andard						
Telephone No: (02) 85	940400													Tele	ohone:		04	48 178	915					
Facsimile No: (02) 85	5940499	Contact	Name:		Aban	ish Ne	pal							Facs	imile:		02	9427 8	3200					
Email: au.samplereceipt.sy	dney@sgs.com	1												Ema	il Resu	ilts:	an	epal@s	slrcons	ulting	.com n	desilva@	D)slrcon	sulting.com
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	PAH/METALS	Asbestos (Presence / Absence)	TRH/BTEX/PAH/Metals	/OCP/OPP/PCB	% CLAY	CEC	Н		НОГР								Notes	
TP14/0.0-0.2	20-6-16	15		X	Ice	2		X	X											1				
TP14/0.2-0.4	20-6-16			X	Ice	2									X									
TP15/0.0-0.2	20-6-16	16		X	Ice	2		x	X															
TP15/0.45-0.65	20-6-16	17		Х	lce	2			X	1														
TP16/0.0-0.2	20-6-16	13		X	Ice	2	X	x																• • • • • • • • • • • • • • • • • • •
TP17/0.0-0.2	20-6-16	19		х	Ice	2	x	x																
TP18/0.0-0.2	20-6-16	20	1	X	lce	2	x	x																
TP18/0.2-0.4	20-6-16	21		X	Ice	2	x																	
TP19/0.0-0.2	20-6-16	12		X	lce	2		X	X															
TP20/0.0-0.2	20-6-16	25		X	Ice	2	x	x																
Relinquished By: Abanish	Nepal	Dat	e/Time	e: 21/0	06/201	6 14.	10	I		Re	eceiv	ed By	Δ	C	clisi	10		Date/	Time	216	116	0		2.201-
Relinquished By: Abanish	Nepal	Dat	e/Time	e: 21/0	06/201	6 14.	10			Re	eceiv	ed By	<i>r</i> :	~	2.01			Date/		~ 10		C		V
Samples Intact: Yes / No)	Ten	nperat	ure:	Ambie	ent / C	hilled			Sa	ample	e Coo	ler Se	ealed:	Yes	No		Labo	ratory	Quotat	tion No	: SLR P	ricing	2015
		Cor	nment	s: Me	thods	and d	etectio	on limits to	o suit N	IEP	PM 20)13						Labo	ratory	Quotat	tion No	:		

SGS				C	СНА	IN C	OF C	UST	ODY	& /	AN	ALY	(S	IS F	REQ	UEST					Pag	e4_	of _5	5
SGS Environmental S	ervices	Compa	ny Nan	ne:	SLR	Consu	Ilting							Proje	ect Na	me/No:	610	.15583	.0020	0 – Ed	ensor P	ark		
Unit 16, 33 Maddox St	reet	Addres	s:		2 Lin	coln S	treet							Purc	hase (Order No:	SG	S PO 2	1055;	Eurofi	ns PO 2	1056		
Alexandria NSW 2015					Lane	Cove	NSW	2066						Resu	ults Re	quired By:	Sta	ndard						
Telephone No: (02) 85	940400													Tele	phone		044	8 178 9	915					
Facsimile No: (02) 85	5940499	Contac	Name		Aban	ish Ne	epal		and a second					Facs	imile:		02 9	427 82	200					
Email: au.samplereceipt.sy	dney@sgs.com	1												Ema	il Resu	ults:	ane	pal@sl	rcons	ulting	.com no	desilva@	D)slrcons	sulting.com
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	PAH/METALS	Asbestos (Presence / Absence)	TRH/BTEX/PAH/Metals	/OCP/OPP/PCB % CI AY	% CLAT	CeC	Н		НОГР								Notes	
TP20/0.3-0.5	20-6-16			X	Ice	2									X					-				
TP21/0.0-0.2	20-6-16	24		X	Ice	2	X	X																
TP21/0.3-0.5	20-6-16			X	Ice	2				1					X			-						
TP22/0.0-0.2	20-6-16	25		X	Ice	2		X	X															
TP23/0.0-0.2	20-6-16	26		X	Ice	2	X	X																
TP23/0.3-0.5	20-6-16	27		X	Ice	2				X	>		Х											
TP24/0.0-0.2	20-6-16	28		X	Ice	2		X	X								-							
TP24/0.2-0.4	20-6-16			X	Ice	2									X					1				
TP25/0.0-0.2	20-6-16	29		X	Ice	2	X	X		1				1										
TP25/0.4-0.6	20-6-16	30	1	X	Ice	2	х	X																
Relinquished By: Abanish	Nepal		te/Tim	e: 21/	06/201	6 14.	10			Rec	eived	By:	Δ.	m	lisv	0		Date/T	ime	2116	116	0		1.201-
Relinquished By: Abanish	Nepal	Da	te/Tim	e: 21/	06/201	6 14.	10			Rec	eived	By:						Date/T	ime	21/0		C		
Samples Intact: Yes / No		Те	npera	ture:	Ambie	ent / C	hilled			Sam	nple (cooler	r Se	ealed:	Yes	No		Labora	atory (Quota	tion No:	SLR P	ricing 2	2015
		Co	mmen	ts: Me	thods	and d	etectio	on limits t	to suit N	EPM	1 2013	3						Labora	atory (Quotat	tion No:		1. August	

SGS				C	СНА	IN C	DF C	US	ΓΟΕ	DY 8	k Al	NAL	.YS	IS R	EQ	UEST					Page	5 of _5	
SGS Environmental S	ervices	Comp	any Na	me:	SLR	Consu	Iting							Proje	ct Nan	ne/No:	610	.15583	3.00200	0 – Ed	ensor Park		
Unit 16, 33 Maddox St	reet	Addre	SS:		2 Line	coln S	treet							Purch	nase O	rder No:	SG	S PO 2	21055;	Eurofi	ns PO 21056		
Alexandria NSW 2015					Lane	Cove	NSW 2	2066						Resu	Its Red	quired By:	Sta	ndard					
Telephone No: (02) 85	940400								1919-50-50					Telep	hone:		044	8 178	915				
Facsimile No: (02) 85	5940499	Conta	ct Nam	e:	Aban	ish Ne	pal							Facsi	mile:		02 9	9427 8	200				
Email: au.samplereceipt.sy	dney@sgs.com	1												Email	Resu	lts:	ane	pal@s	Ircons	ulting	.com ndesilv	a@slrconsulti	ing.com
Client Sample ID	Date Sampled	Lab Sample ID	WATER	Soil	PRESERVATIVE	NO OF CONTAINERS	PAH/METALS	Asbestos (Presence / Absence)	втех	TRH/BTEX/PAH/Metals /OCP/OPP/PCB	% CLAY	CEC	HA		НОГР							Notes	
TP20/PACM	20-6-16	31			Ice	1		X													-		
DUP01	20-6-16	32		X	lce	1				Х								-				ind and in	
DUP01A	20-6-16	14		X	Ice	1				X											Please se	end to Eurof	ins
DUP02	20-6-16			X	Ice	1									x								
DUP02A	20-6-16			X	lce	1									X					1			
DUP03	20-6-16	35		X	Ice	1	×							1	X				1				
DUP03A	20-6-16			X	Ice	1									X				1	1			
TRIP BLANK	16-6-16	64 33		X	Ice	1			X		(m, n)												
TRIP SPIKE	16-6-16	815 3		X	Ice	1			Х					1					1				
Relinquished By: Abanish	Nepal	D	ate/Tir	ne: 21/	06/201	6 14.	10	hanna an			Receiv	ed By	Γ. Δ	. 00	lisu	O		Date/	Time	211	6116	@ 71	21
Relinquished By: Abanish	Nepal	D	ate/Ti	ne: 21/	06/201	6 14.	10			F	Receiv	ed By	<i>I</i> :		N			Date/	Time	~1]			1
Samples Intact: Yes / No	1	т	emper	ature:	Ambie	ent / C	hilled			S	ampl	e Coo	ler Se	ealed:	Yes/	No		Labor	atory (Quotat	tion No: SLF	Pricing 201	5
		C	omme	nts: Me	ethods	and d	etectio	n limits	s to si	uit NEI	PM 20	013						Labor	atory (Quotat	tion No:		

-	
From: Sent: To: Cc: Subject:	Abanish Nepal [anepal@slrconsulting.com] Wednesday, 22 June 2016 5:28 AM AU.SampleReceipt.Sydney (Sydney) Crawford, Huong (Sydney); Ellerington, Trent (Sydney) Re: 610.14889 & 610.15583 COCs
Hi Team	
Could also analyse 610.15583 Esensor F	se DUP03 for PAH/Metals and send DUP03A (both samples for our project ^ Park) to Eurofins for the same analysis?
Kind Regards Abanish Nepal Senior Consultant	t - Land Quality and Remediation
On 21 Jun 2016, a	at 2:30 PM, Abanish Nepal <anepal@slrconsulting.com> wrote:</anepal@slrconsulting.com>
Abanish Nepal Senior Consultant	t - Land Quality and Remediation SLR Consulting Australia Pty Ltd
Email: <u>mailto:anep</u> Mob: +61 448 178 Tel: +61 2 9427 Fax: +61 2 9427	<pre>mailto:anepal@slrconsulting.com +61 448 178 915 +61 2 9427 8100 +61 2 9427 8200</pre>
2 Lincoln Street,	Lincoln Street, Lane Cove NSW 2066, Australia
WWW.slrconsulting.com	3. COIII
Confidentiality Notice and Disclaimer	Votice
This communication attachment(s) cont privileged. It is addressed. If you	<pre>(cation and any) contains information which is confidential and may also be legally It is intended for the exclusive use of the recipient(s) to whom it is if you are not the intended recipient, any disclosure, copying, distribution or</pre>
any action taken unlawful. If you and then delete t that you are not any way.	any action taken or omitted to be taken in reliance on it, is prohibited and may be unlawful. If you have received this communication in error please email us by return mail and then delete the email from your system together with any copies of it. Please note that you are not permitted to print, copy, disclose or use part or all of the content in any way.
Emails and any in delayed. As a res howsoever caused attachment after to screen all ema virus free.	Emails and any information transmitted thereunder may be intercepted, corrupted or delayed. As a result, SLR does not accept any responsibility for any errors or omissions howsoever caused and SLR accepts no responsibility for changes made to this email or any attachment after transmission from SLR. Whilst all reasonable endeavours are taken by SLR to screen all emails for known viruses, SLR cannot guarantee that any transmission will be virus free.
Any views or opir those of SLR Mana	opinions are solely those of the author and do not necessarily represent Management Ltd, or any of its subsidiaries, unless specifically stated.

AU.SampleReceipt.Sydney (Sydney)

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Abanish Nepal	Manager	Huong Crawford	
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANE COVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9427 8100	Telephone	+61 2 8594 0400	
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499	
Email	anepal@slrconsulting.com	Email	au.environmental.sydney@sgs.com	
Project	610.15583.00200 - Edensor Park	Samples Received	Tue 21/6/2016	
Order Number	21055	Report Due	Tue 28/6/2016	
Samples	35	SGS Reference	SE153862	

_ SUBMISSION DETAILS

This is to confirm that 35 samples were received on Tuesday 21/6/2016. Results are expected to be ready by Tuesday 28/6/2016. Please quote SGS reference SE153862 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 34 Soils, 1 Material 21/6/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 13.0°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

% Clay subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. 12 soil samples have been placed on hold.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t Australia f

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

CLIENT DETAILS _

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.15583.00200 - Edensor Park

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP01/0.0-0.2	28	13	26	11	-	10	12	8
002	TP02/0.0-0.2	-	-	26	-	1	-	-	-
003	TP03/0.0-0.2	28	13	26	11	-	10	12	8
004	TP04/0.05-0.25	-	-	26	-	-	-	-	-
005	TP05/0.05-0.25	-	-	26	-	-	-	-	-
006	TP06/0.0-0.2	-	-	26	-	-	-	-	-
007	TP07/0.0-0.2	28	13	26	11	-	10	12	8
008	TP08/0.05-0.25	-	-	26	-	-	-	-	-
009	TP09/0.0-0.2	-	-	26	-	-	-	-	-
010	TP09/0.2-0.4	-	-	26	-	-	-	-	-
011	TP10/0.0-0.2	-	-	26	-	-	-	-	-
012	TP11/0.0-0.2	28	13	26	11	1	10	12	8
013	TP12/0.05-0.25	-	-	26	-	-	-	-	-
014	TP13/0.0-0.2	-	-	26	-	-	-	-	-
015	TP14/0.0-0.2	28	13	26	11	-	10	12	8
016	TP15/0.0-0.2	28	13	26	11	-	10	12	8
017	TP15/0.45-0.65	28	13	26	11	-	10	12	8
018	TP16/0.0-0.2	-	-	26	-	-	-	-	-
019	TP17/0.0-0.2	-	-	26	-	-	-	-	-
020	TP18/0.0-0.2	-	-	26	-	-	-	-	-
)21	TP18/0.2-0.4	-	-	26	-	-	-	-	-
)22	TP19/0.0-0.2	28	13	26	11	-	10	12	8
023	TP20/0.0-0.2	-	-	26	-	_	-	_	_

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

__ CLIENT DETAILS __

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.15583.00200 - Edensor Park

	OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	TP22/0.0-0.2	28	13	26	11	-	10	12	8
026	TP23/0.0-0.2	-	-	26	-	-	-	-	-
027	TP23/0.3-0.5	-	-	-	-	1	-	-	-
028	TP24/0.0-0.2	28	13	26	11	-	10	12	8
029	TP25/0.0-0.2	-	-	26	-	-	-	-	-
030	TP25/0.4-0.6	-	-	26	-	-	-	-	-
032	DUP01	28	13	26	11	-	10	12	8
033	TRIP BLANK	-	-	-	-	-	-	12	-
034	TRIP SPIKE	-	-	-	-	-	-	9	-
035	Dup03	-	-	26	-	-	-	-	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS _

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.15583.00200 - Edensor Park

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Recoverable Metals in Soil/Waste
001	TP01/0.0-0.2	-	1	1	1	7
002	TP02/0.0-0.2	13	1	1	1	7
003	TP03/0.0-0.2	-	1	1	1	7
004	TP04/0.05-0.25	-	1	1	1	7
005	TP05/0.05-0.25	-	1	1	1	7
006	TP06/0.0-0.2	-	1	1	1	7
007	TP07/0.0-0.2	-	1	1	1	7
008	TP08/0.05-0.25	-	1	1	1	7
009	TP09/0.0-0.2	-	1	1	1	7
010	TP09/0.2-0.4	-	1	1	1	7
011	TP10/0.0-0.2	-	1	1	1	7
012	TP11/0.0-0.2	13	1	1	1	7
013	TP12/0.05-0.25	-	1	1	1	7
014	TP13/0.0-0.2	-	1	1	1	7
015	TP14/0.0-0.2	-	1	1	1	7
016	TP15/0.0-0.2	-	1	1	1	7
017	TP15/0.45-0.65	-	-	1	1	7
018	TP16/0.0-0.2	-	1	1	1	7
019	TP17/0.0-0.2	-	1	1	1	7
020	TP18/0.0-0.2	-	1	1	1	7
021	TP18/0.2-0.4	-	-	1	1	7
022	TP19/0.0-0.2	-	1	1	1	7
023	TP20/0.0-0.2	-	1	1	1	7
024	TP21/0.0-0.2	-	1	1	1	7

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

__ CLIENT DETAILS __

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.15583.00200 - Edensor Park

JMIMARY	Y OF ANALYSIS						
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Fibre ID in bulk materials	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Recoverable Metals in Soil/Waste
025	TP22/0.0-0.2	-	-	1	1	1	7
026	TP23/0.0-0.2	-	-	1	1	1	7
027	TP23/0.3-0.5	13	-	-	-	1	-
028	TP24/0.0-0.2	-	-	1	1	1	7
029	TP25/0.0-0.2	-	-	1	1	1	7
030	TP25/0.4-0.6	-	-	1	1	1	7
031	TP20/PACM	-	1	-	-	-	-
032	DUP01	-	-	-	1	1	7
033	TRIP BLANK	-	-	-	-	1	-
035	Dup03	-	-	-	1	1	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact Client Address	Abanish Nepal SLR CONSULTING AUSTRALIA PTY LTD Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) NSW 2066	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9427 8100	Telephone	+61 2 8594 0400	
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499	
Email	anepal@slrconsulting.com	Email	au.environmental.sydney@sgs.com	
Project	610.15583.00200 - Edensor Park	SGS Reference	SE153862 R1	
Order Number	21055	Date Received	21/6/2016	
Samples	35	Date Reported	29/6/2016	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No.SE153862 R0 issued by SGS Environment, Heath and Safety due to amended job description.

% Clay subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

No respirable fibres detected in soil samples using trace analysis technique.

Sample #23: 2-6mm length fibre bundles found in 6x4mm cement sheet fragment.

Asbestos analysed by Approved Identifiers Ravee Sivasubramaniam and Yusuf Kuthpudin .

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SE153862 R1

VOC's in Soil [AN433] Tested: 23/6/2016

			TP01/0.0-0.2	TP03/0.0-0.2	TP07/0.0-0.2	TP11/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.003	SE153862.007	SE153862.012	SE153862.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP15/0.0-0.2	TP15/0.45-0.65	TP19/0.0-0.2	TP22/0.0-0.2	TP24/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.022	SE153862.025	SE153862.028
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			DUP01	TRIP BLANK	TRIP SPIKE
PARAMETER	UOM	LOR	SOIL - 20/6/2016 SE153862.032	SOIL - 16/6/2016 SE153862.033	SOIL - 16/6/2016 SE153862.034
Benzene	mg/kg	0.1	<0.1	<0.1	[90%]
Toluene	mg/kg	0.1	<0.1	<0.1	[99%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	[82%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	[87%]
o-xylene	mg/kg	0.1	<0.1	<0.1	[91%]
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	-

SE153862 R1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 23/6/2016

			TP01/0.0-0.2	TP03/0.0-0.2	TP07/0.0-0.2	TP11/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	20/6/2016 SE153862.001	20/6/2016 SE153862.003	20/6/2016 SE153862.007	20/6/2016 SE153862.012	20/6/2016 SE153862.015
TRH C6-C9		20	<20	<20	<20		
	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP15/0.0-0.2	TP15/0.45-0.65	TP19/0.0-0.2	TP22/0.0-0.2	TP24/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	20/6/2016 SE153862.016	20/6/2016 SE153862.017	20/6/2016 SE153862.022	20/6/2016 SE153862.025	20/6/2016 SE153862.028
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			DUP01
			SOIL
			-
			20/6/2016
PARAMETER	UOM	LOR	SE153862.032
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

SE153862 R1

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 24/6/2016

			TP01/0.0-0.2	TP03/0.0-0.2	TP07/0.0-0.2	TP11/0.0-0.2	TP14/0.0-0.2
PARAMETER	UOM	LOR	SOIL - 20/6/2016 SE153862.001	SOIL - 20/6/2016 SE153862.003	SOIL - 20/6/2016 SE153862.007	SOIL - 20/6/2016 SE153862.012	SOIL - 20/6/2016 SE153862.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			TP15/0.0-0.2	TP15/0.45-0.65	TP19/0.0-0.2	TP22/0.0-0.2	TP24/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/6/2016	- 20/6/2016	- 20/6/2016	- 20/6/2016	- 20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.022	SE153862.025	SE153862.028
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			DUP01
PARAMETER	UOM	LOR	SOIL - 20/6/2016 SE153862.032
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH C10-C40 Total	mg/kg	210	<210

SE153862 R1

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/6/2016

			TP01/0.0-0.2	TP02/0.0-0.2	TP03/0.0-0.2	TP04/0.05-0.25	TP05/0.05-0.25
			SOIL	SOIL	SOIL	SOIL	SOIL
				- 3012	- 3012	- 3012	-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.002	SE153862.003	SE153862.004	SE153862.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	8	<8.0	<8.0	<8.0	<8.0	<8.0

			TP06/0.0-0.2	TP07/0.0-0.2	TP08/0.05-0.25	TP09/0.0-0.2	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.006	SE153862.007	SE153862.008	SE153862.009	SE153862.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	8	<8.0	<8.0	<8.0	<8.0	<8.0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/6/2016 (continued)

			TP10/0.0-0.2	TP11/0.0-0.2	TP12/0.05-0.25	TP13/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- 5012	- 5012
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.011	SE153862.012	SE153862.013	SE153862.014	SE153862.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	8	<8.0	<8.0	<8.0	<8.0	<8.0

			TP15/0.0-0.2	TP15/0.45-0.65	TP16/0.0-0.2	TP17/0.0-0.2	TP18/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 5012	-	- 5012	- 5012
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.018	SE153862.019	SE153862.020
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	8	<8.0	<8.0	<8.0	<8.0	<8.0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/6/2016 (continued)

			TP18/0.2-0.4	TP19/0.0-0.2	TP20/0.0-0.2	TP21/0.0-0.2	TP22/0.0-0.2
			SOIL	SOIL	SOIL		001
			- SOIL	- SUIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.021	SE153862.022	SE153862.023	SE153862.024	SE153862.025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	8	<8.0	<8.0	<8.0	<8.0	<8.0

			TP23/0.0-0.2	TP24/0.0-0.2	TP25/0.0-0.2	TP25/0.4-0.6	DUP01
			SOIL	SOIL	SOIL	SOIL	SOIL
			- SUIL	SUIL	- SUIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.026	SE153862.028	SE153862.029	SE153862.030	SE153862.032
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	8	<8.0	<8.0	<8.0	<8.0	<8.0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/6/2016 (continued)

			Dup03
			-
			20/6/2016
PARAMETER	UOM	LOR	SE153862.035
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	8	<8.0

SE153862 R1

OC Pesticides in Soil [AN400/AN420] Tested: 24/6/2016

			TP01/0.0-0.2	TP03/0.0-0.2	TP07/0.0-0.2	TP11/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
		1.05	20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER Hexachlorobenzene (HCB)	UOM mg/kg	LOR 0.1	SE153862.001	SE153862.003	SE153862.007 <0.1	SE153862.012	SE153862.015 <0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane		0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg						
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE153862 R1

OC Pesticides in Soil [AN400/AN420] Tested: 24/6/2016 (continued)

			TP15/0.0-0.2	TP15/0.45-0.65	TP19/0.0-0.2	TP22/0.0-0.2	TP24/0.0-0.2
			001	001			00"
			SOIL	SOIL	SOIL	SOIL	SOIL -
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.022	SE153862.025	SE153862.028
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE153862 R1

OC Pesticides in Soil [AN400/AN420] Tested: 24/6/2016 (continued)

			DUP01
			SOIL -
			20/6/2016
PARAMETER	UOM	LOR	SE153862.032
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1

SE153862 R1

OP Pesticides in Soil [AN400/AN420] Tested: 24/6/2016

			TP01/0.0-0.2	TP03/0.0-0.2	TP07/0.0-0.2	TP11/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.003	SE153862.007	SE153862.012	SE153862.015
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			TP15/0.0-0.2	TP15/0.45-0.65	TP19/0.0-0.2	TP22/0.0-0.2	TP24/0.0-0.2
PARAMETER	UOM	LOR	SOIL - 20/6/2016 SE153862.016	SOIL - 20/6/2016 SE153862.017	SOIL - 20/6/2016 SE153862.022	SOIL - 20/6/2016 SE153862.025	SOIL - 20/6/2016 SE153862.028
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			DUP01
			SOIL - 20/6/2016
PARAMETER	UOM	LOR	SE153862.032
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2

SE153862 R1

PCBs in Soil [AN400/AN420] Tested: 24/6/2016

			TP01/0.0-0.2	TP03/0.0-0.2	TP07/0.0-0.2	TP11/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.003	SE153862.007	SE153862.012	SE153862.015
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP15/0.0-0.2	TP15/0.45-0.65	TP19/0.0-0.2	TP22/0.0-0.2	TP24/0.0-0.2
			SOIL -	SOIL	SOIL	SOIL	SOIL -
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.022	SE153862.025	SE153862.028
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			DUP01
PARAMETER	UOM	LOR	SOIL - 20/6/2016 SE153862.032
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

pH in soil (1:5) [AN101] Tested: 27/6/2016

			TP02/0.0-0.2	TP11/0.0-0.2	TP23/0.3-0.5
			SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.002	SE153862.012	SE153862.027
рН	pH Units	-	6.8	6.5	6.2

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 28/6/2016

			TP02/0.0-0.2	TP11/0.0-0.2	TP23/0.3-0.5
PARAMETER	UOM	LOR	SOIL - 20/6/2016 SE153862.002	SOIL - 20/6/2016 SE153862.012	SOIL - 20/6/2016 SE153862.027
Exchangeable Sodium, Na	mg/kg	2	90	230	130
Exchangeable Sodium, Na	meq/100g	0.01	0.39	0.98	0.55
Exchangeable Sodium Percentage*	%	0.1	3.2	10.4	7.3
Exchangeable Potassium, K	mg/kg	2	170	110	110
Exchangeable Potassium, K	meq/100g	0.01	0.43	0.29	0.27
Exchangeable Potassium Percentage*	%	0.1	3.6	3.0	3.6
Exchangeable Calcium, Ca	mg/kg	2	1600	540	450
Exchangeable Calcium, Ca	meq/100g	0.01	7.8	2.7	2.2
Exchangeable Calcium Percentage*	%	0.1	64.4	28.5	29.5
Exchangeable Magnesium, Mg	mg/kg	2	430	670	550
Exchangeable Magnesium, Mg	meq/100g	0.02	3.5	5.5	4.5
Exchangeable Magnesium Percentage*	%	0.1	28.8	58.1	59.6
Cation Exchange Capacity	meq/100g	0.02	12	9.4	7.6

SE153862 R1

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 27/6/2016

			TP01/0.0-0.2	TP02/0.0-0.2	TP03/0.0-0.2	TP04/0.05-0.25	TP05/0.05-0.25
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.002	SE153862.003	SE153862.004	SE153862.005
Arsenic, As	mg/kg	3	17	34	6	6	5
Cadmium, Cd	mg/kg	0.3	0.6	0.8	0.3	0.5	0.3
Chromium, Cr	mg/kg	0.3	15	17	11	14	13
Copper, Cu	mg/kg	0.5	43	96	14	18	17
Lead, Pb	mg/kg	1	53	100	20	26	17
Nickel, Ni	mg/kg	0.5	8.9	7.5	6.1	8.1	13
Zinc, Zn	mg/kg	0.5	54	52	28	49	36

			TP06/0.0-0.2	TP07/0.0-0.2	TP08/0.05-0.25	TP09/0.0-0.2	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.006	SE153862.007	SE153862.008	SE153862.009	SE153862.010
Arsenic, As	mg/kg	3	7	8	4	7	5
Cadmium, Cd	mg/kg	0.3	0.4	0.5	<0.3	0.4	0.4
Chromium, Cr	mg/kg	0.3	15	15	12	16	13
Copper, Cu	mg/kg	0.5	17	24	18	16	22
Lead, Pb	mg/kg	1	18	21	13	18	16
Nickel, Ni	mg/kg	0.5	4.5	5.1	3.5	5.7	5.1
Zinc, Zn	mg/kg	0.5	62	33	22	27	36

			TP10/0.0-0.2	TP11/0.0-0.2	TP12/0.05-0.25	TP13/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.011	SE153862.012	SE153862.013	SE153862.014	SE153862.015
Arsenic, As	mg/kg	3	7	8	9	7	8
Cadmium, Cd	mg/kg	0.3	0.4	0.4	0.5	0.4	0.6
Chromium, Cr	mg/kg	0.3	13	16	16	15	15
Copper, Cu	mg/kg	0.5	22	18	26	25	31
Lead, Pb	mg/kg	1	19	19	25	18	23
Nickel, Ni	mg/kg	0.5	6.5	6.9	9.2	7.4	7.0
Zinc, Zn	mg/kg	0.5	41	32	36	41	56

			TP15/0.0-0.2	TP15/0.45-0.65	TP16/0.0-0.2	TP17/0.0-0.2	TP18/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/6/2016	- 20/6/2016	- 20/6/2016	- 20/6/2016	- 20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.018	SE153862.019	SE153862.020
Arsenic, As	mg/kg	3	8	6	7	6	7
Cadmium, Cd	mg/kg	0.3	0.6	0.3	0.4	0.4	0.5
Chromium, Cr	mg/kg	0.3	18	12	14	13	13
Copper, Cu	mg/kg	0.5	28	24	17	29	28
Lead, Pb	mg/kg	1	48	16	38	18	27
Nickel, Ni	mg/kg	0.5	9.4	5.2	5.2	8.5	8.2
Zinc, Zn	mg/kg	0.5	99	41	61	44	67

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 27/6/2016 (continued)

			TP18/0.2-0.4	TP19/0.0-0.2	TP20/0.0-0.2	TP21/0.0-0.2	TP22/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.021	SE153862.022	SE153862.023	SE153862.024	SE153862.025
Arsenic, As	mg/kg	3	7	8	7	9	7
Cadmium, Cd	mg/kg	0.3	0.5	0.5	0.9	0.7	0.5
Chromium, Cr	mg/kg	0.3	14	17	22	20	15
Copper, Cu	mg/kg	0.5	25	29	26	29	25
Lead, Pb	mg/kg	1	21	25	73	25	21
Nickel, Ni	mg/kg	0.5	7.8	11	15	10	7.1
Zinc, Zn	mg/kg	0.5	37	64	430	47	34

			TP23/0.0-0.2	TP24/0.0-0.2	TP25/0.0-0.2	TP25/0.4-0.6	DUP01
			SOIL	SOIL	SOIL	SOIL	SOIL
						-	
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.026	SE153862.028	SE153862.029	SE153862.030	SE153862.032
Arsenic, As	mg/kg	3	7	8	8	7	7
Cadmium, Cd	mg/kg	0.3	0.7	0.5	0.5	<0.3	0.7
Chromium, Cr	mg/kg	0.3	13	15	14	15	16
Copper, Cu	mg/kg	0.5	21	22	17	15	29
Lead, Pb	mg/kg	1	25	21	27	15	60
Nickel, Ni	mg/kg	0.5	8.7	7.7	8.9	6.7	9.7
Zinc, Zn	mg/kg	0.5	45	45	57	27	110

			Dup03
			SOIL
			- 20/6/2016
PARAMETER	UOM	LOR	SE153862.035
Arsenic, As	mg/kg	3	6
Cadmium, Cd	mg/kg	0.3	0.3
Chromium, Cr	mg/kg	0.3	14
Copper, Cu	mg/kg	0.5	15
Lead, Pb	mg/kg	1	15
Nickel, Ni	mg/kg	0.5	6.5
Zinc, Zn	mg/kg	0.5	30

SE153862 R1

Mercury in Soil [AN312] Tested: 27/6/2016

			TP01/0.0-0.2	TP02/0.0-0.2	TP03/0.0-0.2	TP04/0.05-0.25	TP05/0.05-0.25
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.002	SE153862.003	SE153862.004	SE153862.005
Mercury	mg/kg	0.01	0.03	0.05	0.01	<0.01	<0.01

			TP06/0.0-0.2	TP07/0.0-0.2	TP08/0.05-0.25	TP09/0.0-0.2	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.006	SE153862.007	SE153862.008	SE153862.009	SE153862.010
Mercury	mg/kg	0.01	<0.01	<0.01	<0.01	0.02	<0.01

			TP10/0.0-0.2	TP11/0.0-0.2	TP12/0.05-0.25	TP13/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.011	SE153862.012	SE153862.013	SE153862.014	SE153862.015
Mercury	mg/kg	0.01	<0.01	0.01	<0.01	0.04	0.02

			TP15/0.0-0.2	TP15/0.45-0.65	TP16/0.0-0.2	TP17/0.0-0.2	TP18/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.018	SE153862.019	SE153862.020
Mercury	mg/kg	0.01	0.04	<0.01	0.03	0.02	0.03

			TP18/0.2-0.4	TP19/0.0-0.2	TP20/0.0-0.2	TP21/0.0-0.2	TP22/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.021	SE153862.022	SE153862.023	SE153862.024	SE153862.025
Mercury	mg/kg	0.01	<0.01	0.01	0.05	0.03	0.02

			TP23/0.0-0.2	TP24/0.0-0.2	TP25/0.0-0.2	TP25/0.4-0.6	DUP01
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.026	SE153862.028	SE153862.029	SE153862.030	SE153862.032
Mercury	mg/kg	0.01	0.04	0.03	0.03	0.01	0.03

			Dup03
			SOIL
			-
			20/6/2016
PARAMETER	UOM	LOR	SE153862.035
Mercury	mg/kg	0.01	0.01

SE153862 R1

Moisture Content [AN002] Tested: 24/6/2016

			TP01/0.0-0.2	TP02/0.0-0.2	TP03/0.0-0.2	TP04/0.05-0.25	TP05/0.05-0.25
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.002	SE153862.003	SE153862.004	SE153862.005
% Moisture	%w/w	0.5	21	22	19	15	21

			TP06/0.0-0.2	TP07/0.0-0.2	TP08/0.05-0.25	TP09/0.0-0.2	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.006	SE153862.007	SE153862.008	SE153862.009	SE153862.010
% Moisture	%w/w	0.5	14	20	19	23	20

			TP10/0.0-0.2	TP11/0.0-0.2	TP12/0.05-0.25	TP13/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.011	SE153862.012	SE153862.013	SE153862.014	SE153862.015
% Moisture	%w/w	0.5	20	19	18	19	20

			TP15/0.0-0.2	TP15/0.45-0.65	TP16/0.0-0.2	TP17/0.0-0.2	TP18/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.017	SE153862.018	SE153862.019	SE153862.020
% Moisture	%w/w	0.5	22	21	18	20	28

			TP18/0.2-0.4	TP19/0.0-0.2	TP20/0.0-0.2	TP21/0.0-0.2	TP22/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.021	SE153862.022	SE153862.023	SE153862.024	SE153862.025
% Moisture	%w/w	0.5	20	19	13	20	20

			TP23/0.0-0.2	TP23/0.3-0.5	TP24/0.0-0.2	TP25/0.0-0.2	TP25/0.4-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.026	SE153862.027	SE153862.028	SE153862.029	SE153862.030
% Moisture	%w/w	0.5	19	17	20	19	19

			DUP01	TRIP BLANK	Dup03
			SOIL	SOIL	SOIL
			20/6/2016	16/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.032	SE153862.033	SE153862.035
% Moisture	%w/w	0.5	23	<0.5	19

SE153862 R1

Fibre Identification in soil [AN602] Tested: 27/6/2016

			TP01/0.0-0.2	TP02/0.0-0.2	TP03/0.0-0.2	TP04/0.05-0.25	TP05/0.05-0.25
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.001	SE153862.002	SE153862.003	SE153862.004	SE153862.005
Asbestos Detected	No unit	-	No	No	No	No	No

			TP06/0.0-0.2	TP07/0.0-0.2	TP08/0.05-0.25	TP09/0.0-0.2	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.006	SE153862.007	SE153862.008	SE153862.009	SE153862.010
Asbestos Detected	No unit	-	No	No	No	No	No

			TP10/0.0-0.2	TP11/0.0-0.2	TP12/0.05-0.25	TP13/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.011	SE153862.012	SE153862.013	SE153862.014	SE153862.015
Asbestos Detected	No unit	-	No	No	No	No	No

			TP15/0.0-0.2	TP16/0.0-0.2	TP17/0.0-0.2	TP18/0.0-0.2	TP19/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.016	SE153862.018	SE153862.019	SE153862.020	SE153862.022
Asbestos Detected	No unit	-	No	No	No	No	No

			TP20/0.0-0.2	TP21/0.0-0.2	TP22/0.0-0.2	TP23/0.0-0.2	TP24/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/6/2016	20/6/2016	20/6/2016	20/6/2016	20/6/2016
PARAMETER	UOM	LOR	SE153862.023	SE153862.024	SE153862.025	SE153862.026	SE153862.028
Asbestos Detected	No unit	-	Yes	No	No	No	No

			TP25/0.0-0.2	TP25/0.4-0.6
			SOIL	SOIL
			- 20/6/2016	- 20/6/2016
PARAMETER	UOM	LOR	SE153862.029	SE153862.030
Asbestos Detected	No unit	-	No	No

SE153862 R1

Fibre ID in bulk materials [AN602] Tested: 28/6/2016

			TP20/PACM
			MATERIAL
			- 20/6/2016
PARAMETER	UOM	LOR	SE153862.031
Asbestos Detected	No unit	-	Yes

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below :
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

METHOD SUMMARY

AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

```
FOOTNOTES -
```

the p ** Indic	A accreditation does not cover performance of this service. ative data, theoretical holding exceeded.	IS	Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.	UOM LOR ↑↓	Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.
-------------------	--	----	--	------------------	--

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Abanish Nepal	Manager	Huong Crawford
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9427 8100	Telephone	+61 2 8594 0400
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499
Email	anepal@slrconsulting.com	Email	au.environmental.sydney@sgs.com
Project	610.15583.00200 - Edensor Park	SGS Reference	SE153862 R1
Order Number	21055	Date Received	21 Jun 2016
Samples	35	Date Reported	29 Jun 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

2 items

SAMPLE SUMMARY	1
----------------	---

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

34 Soils, 1 Material 21/6/2016 Yes SGS Yes Ice Bricks Yes

Unit 16 33 Maddox St

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

coc Yes 13.0°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and	hangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
TP02/0.0-0.2	SE153862.002	LB104232	20 Jun 2016	21 Jun 2016	18 Jul 2016	28 Jun 2016	18 Jul 2016	28 Jun 2016	
TP11/0.0-0.2	SE153862.012	LB104232	20 Jun 2016	21 Jun 2016	18 Jul 2016	28 Jun 2016	18 Jul 2016	28 Jun 2016	
TP23/0.3-0.5	SE153862.027	LB104232	20 Jun 2016	21 Jun 2016	18 Jul 2016	28 Jun 2016	18 Jul 2016	28 Jun 2016	
Fibre ID in bulk materials							Method: I	ME-(AU)-[ENV]AN602	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
TP20/PACM	SE153862.031	LB104253	20 Jun 2016	21 Jun 2016	20 Jun 2017	28 Jun 2016	20 Jun 2017	28 Jun 2016	

Fibre Identification in soil							Method:	ME-(AU)-[ENV]AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE153862.001	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP02/0.0-0.2	SE153862.002	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP03/0.0-0.2	SE153862.003	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP04/0.05-0.25	SE153862.004	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP05/0.05-0.25	SE153862.005	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP06/0.0-0.2	SE153862.006	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP07/0.0-0.2	SE153862.007	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP08/0.05-0.25	SE153862.008	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP09/0.0-0.2	SE153862.009	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP09/0.2-0.4	SE153862.010	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP10/0.0-0.2	SE153862.011	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP12/0.05-0.25	SE153862.013	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP13/0.0-0.2	SE153862.014	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP16/0.0-0.2	SE153862.018	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP17/0.0-0.2	SE153862.019	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP18/0.0-0.2	SE153862.020	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP19/0.0-0.2	SE153862.022	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP20/0.0-0.2	SE153862.023	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP21/0.0-0.2	SE153862.024	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP22/0.0-0.2	SE153862.025	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP23/0.0-0.2	SE153862.026	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP24/0.0-0.2	SE153862.028	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP25/0.0-0.2	SE153862.029	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016
TP25/0.4-0.6	SE153862.030	LB104198	20 Jun 2016	21 Jun 2016	20 Jun 2017	27 Jun 2016	20 Jun 2017	28 Jun 2016

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE153862.001	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP02/0.0-0.2	SE153862.002	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP03/0.0-0.2	SE153862.003	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP04/0.05-0.25	SE153862.004	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP05/0.05-0.25	SE153862.005	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP06/0.0-0.2	SE153862.006	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP07/0.0-0.2	SE153862.007	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP08/0.05-0.25	SE153862.008	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP09/0.0-0.2	SE153862.009	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP09/0.2-0.4	SE153862.010	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP10/0.0-0.2	SE153862.011	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP12/0.05-0.25	SE153862.013	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP13/0.0-0.2	SE153862.014	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB104133	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP15/0.45-0.65	SE153862.017	LB104134	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP16/0.0-0.2	SE153862.018	LB104134	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP17/0.0-0.2	SE153862.019	LB104134	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016
TP18/0.0-0.2	SE153862.020	LB104134	20 Jun 2016	21 Jun 2016	18 Jul 2016	27 Jun 2016	18 Jul 2016	28 Jun 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312 Sample Name Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due TP18/0 2-0 4 SE153862.021 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 TP19/0.0-0.2 SE153862.022 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 18 Jul 2016 28 Jun 2016 27 Jun 2016 TP20/0.0-0.2 SE153862.023 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 TP21/0.0-0.2 SE153862.024 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 TP22/0.0-0.2 SE153862.025 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 TP23/0.0-0.2 SE153862.026 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 TP24/0.0-0.2 20 Jun 2016 21 Jun 2016 27 Jun 2016 SE153862.028 LB104134 18 Jul 2016 18 Jul 2016 28 Jun 2016 TP25/0.0-0.2 SE153862.029 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 TP25/0.4-0.6 SE153862.030 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 DUP01 SE153862.032 LB104134 20 Jun 2016 21 Jun 2016 18 Jul 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 18 Jul 2016 Dup03 SE153862.035 LB104134 20 Jun 2016 21 Jun 2016 27 Jun 2016 18 Jul 2016 28 Jun 2016 Moisture Content Method: ME-(AU)-[ENV]AN002 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted TP01/0.0-0.2 SE153862.001 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP02/0.0-0.2 SE153862.002 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP03/0.0-0.2 SE153862.003 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 27 Jun 2016 24 Jun 2016 29 Jun 2016 TP04/0 05-0 25 SE153862 004 I B104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP05/0.05-0.25 SE153862.005 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP06/0.0-0.2 SE153862.006 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP07/0.0-0.2 SE153862.007 21 Jun 2016 04 Jul 2016 27 Jun 2016 LB104014 20 Jun 2016 24 Jun 2016 29 Jun 2016 TP08/0.05-0.25 SE153862.008 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP09/0.0-0.2 SE153862.009 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP09/0.2-0.4 SE153862.010 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP10/0.0-0.2 LB104014 04 Jul 2016 SE153862.011 20 Jun 2016 21 Jun 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP11/0.0-0.2 SE153862.012 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP12/0.05-0.25 21 Jun 2016 SE153862.013 LB104014 20 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP13/0.0-0.2 SE153862.014 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP14/0.0-0.2 SE153862.015 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP15/0.0-0.2 SE153862.016 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP15/0 45-0 65 SE153862 017 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP16/0.0-0.2 SE153862.018 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP17/0.0-0.2 SE153862.019 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP18/0.0-0.2 SE153862.020 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP18/0.2-0.4 04 Jul 2016 SE153862.021 LB104014 20 Jun 2016 21 Jun 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP19/0.0-0.2 SE153862.022 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP20/0.0-0.2 SE153862.023 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP21/0.0-0.2 SE153862.024 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 SE153862.025 04 Jul 2016 TP22/0.0-0.2 LB104014 20 Jun 2016 21 Jun 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP23/0.0-0.2 21 Jun 2016 04 Jul 2016 SE153862.026 LB104014 20 Jun 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP23/0.3-0.5 SE153862.027 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP24/0.0-0.2 SE153862.028 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TP25/0.0-0.2 SE153862.029 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 29 Jun 2016 24 Jun 2016 27 Jun 2016 TP25/0.4-0.6 SE153862.030 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 DUP01 SE153862.032 LB104014 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 TRIP BLANK SE153862.033 LB104014 16 Jun 2016 21 Jun 2016 30 Jun 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 SE153862.035 LB104014 04 Jul 2016 Dup03 20 Jun 2016 21 Jun 2016 24 Jun 2016 29 Jun 2016 27 Jun 2016 **OC Pesticides in Soli** Method: ME-(AU)-IENVIAN400/AN420 Sample Name Analysed QC Ref Sampled Received Extraction Due Extracted Analvsis Due Sample No. TP01/0 0-0 2 SE153862 001 21 Jun 2016 04 Jul 2016 LB104115 20 Jun 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP02/0.0-0.2 SE153862.002 LB104115 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP03/0.0-0.2 SE153862.003 LB104115 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 SE153862.004 04 Jul 2016 TP04/0.05-0.25 LB104115 20 Jun 2016 21 Jun 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP05/0.05-0.25 04 Jul 2016 SE153862.005 LB104115 20 Jun 2016 21 Jun 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP06/0.0-0.2 SE153862.006 LB104115 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP07/0.0-0.2 SE153862.007 LB104115 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP08/0.05-0.25 SE153862.008 LB104115 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP09/0.0-0.2 SE153862.009 04 Jul 2016 LB104115 20 Jun 2016 21 Jun 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 TP09/0.2-0.4 SE153862.010 LB104115 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016 SE153862.011 TP10/0.0-0.2 LB104115 20 Jun 2016 21 Jun 2016 04 Jul 2016 24 Jun 2016 03 Aug 2016 28 Jun 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

OC Pesticides in Soil (cont	inueu)						Method: ME-(AU	I)-[ENV]AN400/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP11/0.0-0.2	SE153862.012	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P12/0.05-0.25	SE153862.013	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P13/0.0-0.2	SE153862.014	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P14/0.0-0.2	SE153862.015	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P15/0.0-0.2	SE153862.016	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P15/0.45-0.65	SE153862.017	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P16/0.0-0.2	SE153862.018	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P17/0.0-0.2	SE153862.019	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P18/0.0-0.2	SE153862.020	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P18/0.2-0.4	SE153862.021	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P19/0.0-0.2	SE153862.022	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P20/0.0-0.2	SE153862.022	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P21/0.0-0.2	SE153862.024	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P22/0.0-0.2	SE153862.025	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P23/0.0-0.2	SE153862.026	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P24/0.0-0.2	SE153862.028	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P25/0.0-0.2	SE153862.029	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P25/0.4-0.6	SE153862.030	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
OUP01	SE153862.032	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
RIP BLANK	SE153862.033	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
RIP SPIKE	SE153862.034	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
Dup03	SE153862.035	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P Pesticides in Soil							Method: ME-(AL)-[ENV]AN400/AN4
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P01/0.0-0.2	SE153862.001	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P02/0.0-0.2	SE153862.002	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P03/0.0-0.2	SE153862.003	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P04/0.05-0.25	SE153862.004	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P05/0.05-0.25	SE153862.005	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016		28 Jun 2016
							03 Aug 2016	
P06/0.0-0.2	SE153862.006	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P07/0.0-0.2	SE153862.007	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P08/0.05-0.25	SE153862.008	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P09/0.0-0.2	SE153862.009	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P09/0.2-0.4	SE153862.010	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P10/0.0-0.2	SE153862.011	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P11/0.0-0.2	SE153862.012	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P12/0.05-0.25	SE153862.013	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P13/0.0-0.2	SE153862.014	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P14/0.0-0.2	SE153862.015	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P15/0.0-0.2	SE153862.016	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P15/0.45-0.65	SE153862.017	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P16/0.0-0.2	SE153862.018	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P17/0.0-0.2	SE153862.019	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P18/0.0-0.2	SE153862.020	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P18/0.2-0.4	SE153862.021	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P19/0.0-0.2	SE153862.022	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P20/0.0-0.2	SE153862.023	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P21/0.0-0.2	SE153862.024	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P22/0.0-0.2	SE153862.025	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P23/0.0-0.2								
	SE153862.026	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P24/0.0-0.2	SE153862.028	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P25/0.0-0.2	SE153862.029	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P25/0.4-0.6	SE153862.030	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
DUP01	SE153862.032	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
RIP BLANK	SE153862.033	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
RIP SPIKE	SE153862.034	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016

Sample Name Sample No. QC Ref

Method: ME-(AU)-[ENV]AN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromat	ic Hydrocarbons) in Soil (co	ntinued)					Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE153862.001	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP02/0.0-0.2	SE153862.002	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP03/0.0-0.2	SE153862.003	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP04/0.05-0.25	SE153862.004	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP05/0.05-0.25	SE153862.005	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP06/0.0-0.2	SE153862.006	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP07/0.0-0.2	SE153862.007	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP08/0.05-0.25	SE153862.008	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP09/0.0-0.2	SE153862.009	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP09/0.2-0.4	SE153862.010	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP10/0.0-0.2	SE153862.011	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP12/0.05-0.25	SE153862.013	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP13/0.0-0.2	SE153862.014	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP15/0.45-0.65	SE153862.017	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP16/0.0-0.2	SE153862.018	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP17/0.0-0.2	SE153862.019	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP18/0.0-0.2	SE153862.020	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP18/0.2-0.4	SE153862.021	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP19/0.0-0.2	SE153862.022	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP20/0.0-0.2	SE153862.023	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP21/0.0-0.2	SE153862.024	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP22/0.0-0.2	SE153862.025	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP23/0.0-0.2	SE153862.026	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP24/0.0-0.2	SE153862.028	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP25/0.0-0.2	SE153862.029	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP25/0.4-0.6	SE153862.030	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
DUP01	SE153862.032	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TRIP BLANK	SE153862.033	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TRIP SPIKE	SE153862.034	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
Dup03	SE153862.035	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
PCBs in Soil)-[ENV]AN400/AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
							-	-
TP01/0.0-0.2	SE153862.001	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP02/0.0-0.2	SE153862.002	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP03/0.0-0.2	SE153862.003	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP04/0.05-0.25	SE153862.004	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP05/0.05-0.25	SE153862.005	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP06/0.0-0.2	SE153862.006	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP07/0.0-0.2	SE153862.007	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP08/0.05-0.25	SE153862.008	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP09/0.0-0.2	SE153862.009	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP09/0.2-0.4	SE153862.010	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP10/0.0-0.2	SE153862.011	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP12/0.05-0.25	SE153862.013	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP13/0.0-0.2	SE153862.014	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP15/0.45-0.65	SE153862.017	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP16/0.0-0.2	SE153862.018	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP17/0.0-0.2	SE153862.019	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP18/0.0-0.2	SE153862.020	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016

21 Jun 2016

21 Jun 2016

21 Jun 2016

21 Jun 2016

04 Jul 2016

04 Jul 2016

04 Jul 2016

04 Jul 2016

24 Jun 2016

24 Jun 2016

24 Jun 2016

24 Jun 2016

03 Aug 2016

03 Aug 2016

03 Aug 2016

03 Aug 2016

TP18/0.2-0.4

TP19/0.0-0.2

TP20/0.0-0.2

TP21/0.0-0.2

SE153862.021

SE153862.022

SE153862.023

SE153862.024

LB104116

LB104116

LB104116

LB104116

20 Jun 2016

20 Jun 2016

20 Jun 2016

20 Jun 2016

28 Jun 2016

28 Jun 2016

28 Jun 2016

28 Jun 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PCBs in Soil (continued)							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP22/0.0-0.2	SE153862.025	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP23/0.0-0.2	SE153862.026	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP24/0.0-0.2	SE153862.028	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP25/0.0-0.2	SE153862.029	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP25/0.4-0.6	SE153862.030	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
DUP01	SE153862.032	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TRIP BLANK	SE153862.033	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TRIP SPIKE	SE153862.034	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
Dup03	SE153862.035	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
pH in soil (1:5)							Method: I	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP02/0.0-0.2	SE153862.002	LB104154	20 Jun 2016	21 Jun 2016	27 Jun 2016	27 Jun 2016	28 Jun 2016	27 Jun 2016
TP11/0.0-0.2	SE153862.012	LB104154	20 Jun 2016	21 Jun 2016	27 Jun 2016	27 Jun 2016	28 Jun 2016	27 Jun 2016
TP23/0.3-0.5	SE153862.027	LB104154	20 Jun 2016	21 Jun 2016	27 Jun 2016	27 Jun 2016	28 Jun 2016	27 Jun 2016
Total Recoverable Metals in	n Soil/Waste Solids/Materi	als by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE153862.001	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP02/0.0-0.2	SE153862.002	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP03/0.0-0.2	SE153862.003	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP04/0.05-0.25	SE153862.004	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2010	28 Jun 2016
TP05/0.05-0.25	SE153862.005	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP06/0.0-0.2	SE153862.006	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP07/0.0-0.2	SE153862.007	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP08/0.05-0.25	SE153862.008	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP09/0.0-0.2	SE153862.009	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP09/0.2-0.4	SE153862.010	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP10/0.0-0.2	SE153862.011	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP12/0.05-0.25	SE153862.013	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP13/0.0-0.2	SE153862.014	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB104167	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP15/0.45-0.65	SE153862.017	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP16/0.0-0.2	SE153862.018	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP17/0.0-0.2	SE153862.019	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP18/0.0-0.2	SE153862.020	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP18/0.2-0.4	SE153862.021	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP19/0.0-0.2	SE153862.022	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP20/0.0-0.2	SE153862.023	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP21/0.0-0.2	SE153862.024	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP22/0.0-0.2	SE153862.025	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP23/0.0-0.2	SE153862.026	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP24/0.0-0.2	SE153862.028	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP25/0.0-0.2	SE153862.029	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TP25/0.4-0.6	SE153862.030	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
DUP01	SE153862.032	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
Dup03	SE153862.035	LB104168	20 Jun 2016	21 Jun 2016	17 Dec 2016	27 Jun 2016	17 Dec 2016	28 Jun 2016
TRH (Total Recoverable Hy								ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
							-	-
TP01/0.0-0.2 TP02/0.0-0.2	SE153862.001	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016 24 Jun 2016	03 Aug 2016	28 Jun 2016 28 Jun 2016
	SE153862.002	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016		03 Aug 2016	28 Jun 2016
TP03/0.0-0.2	SE153862.003	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	
TP04/0.05-0.25	SE153862.004	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP05/0.05-0.25	SE153862.005	LB104115 LB104115	20 Jun 2016 20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016 24 Jun 2016	03 Aug 2016	28 Jun 2016
TP06/0.0-0.2 TP07/0.0-0.2	SE153862.006	LB104115 LB104115		21 Jun 2016	04 Jul 2016		03 Aug 2016	28 Jun 2016 28 Jun 2016
	SE153862.007		20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	
TP08/0.05-0.25	SE153862.008	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP09/0.0-0.2	SE153862.009	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

TRH (Total Recoverable	Hydrocarbons) in Soil (conti	nued)					Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP09/0.2-0.4	SE153862.010	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP10/0.0-0.2	SE153862.011	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP12/0.05-0.25	SE153862.013	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP13/0.0-0.2	SE153862.014	LB104115	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP15/0.45-0.65	SE153862.017	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP16/0.0-0.2	SE153862.018	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP17/0.0-0.2	SE153862.019	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP18/0.0-0.2	SE153862.020	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
P18/0.2-0.4	SE153862.021	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP19/0.0-0.2	SE153862.022	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP20/0.0-0.2	SE153862.023	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP21/0.0-0.2	SE153862.024	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP22/0.0-0.2	SE153862.025	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP23/0.0-0.2	SE153862.026	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP24/0.0-0.2	SE153862.028	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP25/0.0-0.2	SE153862.029	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FP25/0.4-0.6	SE153862.030	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
DUP01	SE153862.032	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
FRIP BLANK	SE153862.033	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
TRIP SPIKE	SE153862.034	LB104116	16 Jun 2016	21 Jun 2016	30 Jun 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
Dup03	SE153862.035	LB104116	20 Jun 2016	21 Jun 2016	04 Jul 2016	24 Jun 2016	03 Aug 2016	28 Jun 2016
OC's in Soil							Method:	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE153862.001	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP02/0.0.0.2	SE152962.002	1 0102067	20 Jun 2016	21 Jun 2016	04 101 2016	22 Jun 2016	02 Aug 2016	29 Jun 2016

TP03/0.0-0.2	SE153862.003	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP07/0.0-0.2	SE153862.007	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP15/0.45-0.65	SE153862.017	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP19/0.0-0.2	SE153862.022	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP22/0.0-0.2	SE153862.025	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP24/0.0-0.2	SE153862.028	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
DUP01	SE153862.032	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TRIP BLANK	SE153862.033	LB103967	16 Jun 2016	21 Jun 2016	30 Jun 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TRIP SPIKE	SE153862.034	LB103967	16 Jun 2016	21 Jun 2016	30 Jun 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN4								ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE153862.001	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP03/0.0-0.2	SE153862.003	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP07/0.0-0.2	SE153862.007	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP11/0.0-0.2	SE153862.012	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP14/0.0-0.2	SE153862.015	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP15/0.0-0.2	SE153862.016	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP15/0.45-0.65	SE153862.017	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP19/0.0-0.2	SE153862.022	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP22/0.0-0.2	SE153862.025	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TP24/0.0-0.2	SE153862.028	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
DUP01	SE153862.032	LB103967	20 Jun 2016	21 Jun 2016	04 Jul 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TRIP BLANK	SE153862.033	LB103967	16 Jun 2016	21 Jun 2016	30 Jun 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016
TRIP SPIKE	SE153862.034	LB103967	16 Jun 2016	21 Jun 2016	30 Jun 2016	23 Jun 2016	02 Aug 2016	28 Jun 2016

29/6/2016

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: ME-(AU)-[I	-
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP01/0.0-0.2	SE153862.001	%	60 - 130%	71
	TP03/0.0-0.2	SE153862.003	%	60 - 130%	70
	TP07/0.0-0.2	SE153862.007	%	60 - 130%	70
	TP11/0.0-0.2	SE153862.012	%	60 - 130%	70
	TP14/0.0-0.2	SE153862.015	%	60 - 130%	72
	TP15/0.0-0.2	SE153862.016	%	60 - 130%	70
	TP15/0.45-0.65	SE153862.017	%	60 - 130%	71
	TP19/0.0-0.2	SE153862.022	%	60 - 130%	72
	TP22/0.0-0.2	SE153862.025	%	60 - 130%	71
	TP24/0.0-0.2	SE153862.028	%	60 - 130%	70
	DUP01	SE153862.032	%	60 - 130%	70
		SE 133002.032	78		
P Pesticides in Soil				Method: ME-(AU)-[I	
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	TP01/0.0-0.2	SE153862.001	%	60 - 130%	80
	TP03/0.0-0.2	SE153862.003	%	60 - 130%	82
	TP07/0.0-0.2	SE153862.007	%	60 - 130%	80
	TP11/0.0-0.2	SE153862.012	%	60 - 130%	76
	TP14/0.0-0.2	SE153862.015	%	60 - 130%	76
	TP15/0.0-0.2	SE153862.016	%	60 - 130%	76
		SE153862.017	%		
	TP15/0.45-0.65 TP19/0.0-0.2			60 - 130%	74
		SE153862.022	%	60 - 130%	
	TP22/0.0-0.2	SE153862.025	%	60 - 130%	78
	TP24/0.0-0.2	SE153862.028	%	60 - 130%	76
	DUP01	SE153862.032	%	60 - 130%	78
114-p-terphenyl (Surrogate)	TP01/0.0-0.2	SE153862.001	%	60 - 130%	90
	TP03/0.0-0.2	SE153862.003	%	60 - 130%	92
	TP07/0.0-0.2	SE153862.007	%	60 - 130%	90
	TP11/0.0-0.2	SE153862.012	%	60 - 130%	88
	TP14/0.0-0.2	SE153862.015	%	60 - 130%	82
			%		78
	TP15/0.0-0.2	SE153862.016		60 - 130%	
	TP15/0.45-0.65	SE153862.017	%	60 - 130%	72
	TP19/0.0-0.2	SE153862.022	%	60 - 130%	76
	TP22/0.0-0.2	SE153862.025	%	60 - 130%	70
	TP24/0.0-0.2	SE153862.028	%	60 - 130%	78
	DUP01	SE153862.032	%	60 - 130%	74
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	-(AU)-[ENV]/
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	TP01/0.0-0.2	SE153862.001	%	70 - 130%	80
	TP02/0.0-0.2	SE153862.002	%	70 - 130%	78
	TP03/0.0-0.2	SE153862.003	%	70 - 130%	82
			%		86
	TP04/0.05-0.25	SE153862.004		70 - 130%	
	TP05/0.05-0.25	SE153862.005	%	70 - 130%	76
	TP06/0.0-0.2	SE153862.006	%	70 - 130%	76
				70 - 130%	80
	TP07/0.0-0.2	SE153862.007	%		
	TP07/0.0-0.2 TP08/0.05-0.25	SE153862.007 SE153862.008	%	70 - 130%	78
				70 - 130% 70 - 130%	78 76
	TP08/0.05-0.25	SE153862.008	%		
	TP08/0.05-0.25 TP09/0.0-0.2	SE153862.008 SE153862.009	%	70 - 130%	76
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011	% % %	70 - 130% 70 - 130% 70 - 130%	76 78 82
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012	% % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	76 78 82 76
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP11/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	76 78 82 76 78
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP11/0.05-0.25 TP13/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	76 78 82 76 78 80
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP12/0.05-0.25 TP13/0.0-0.2 TP14/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014 SE153862.015	% % % % %	70 - 130% 70 - 130%	76 78 82 76 78 80 76
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP11/0.05-0.25 TP13/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	76 78 82 76 78 80 76 76
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP12/0.05-0.25 TP13/0.0-0.2 TP14/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014 SE153862.015	% % % % %	70 - 130% 70 - 130%	76 78 82 76 78 80 76
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP12/0.05-0.25 TP13/0.0-0.2 TP13/0.0-0.2 TP14/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014 SE153862.015 SE153862.016	% % % % % %	70 - 130% 70 - 130%	76 78 82 76 78 80 76 76
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP13/0.0-0.2 TP13/0.0-0.2 TP14/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014 SE153862.015 SE153862.016 SE153862.017	% % % % % %	70 - 130% 70 - 130%	76 78 82 76 78 80 76 76 76 74
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP13/0.0-0.2 TP14/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP16/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014 SE153862.015 SE153862.016 SE153862.017 SE153862.018	% % % % % % %	70 - 130% 70 - 130%	76 78 82 76 78 80 76 76 76 74
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP13/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014 SE153862.015 SE153862.016 SE153862.017 SE153862.018 SE153862.019 SE153862.020	% % % % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	76 78 82 76 78 80 76 76 74 76 82 76
	TP08/0.05-0.25 TP09/0.0-0.2 TP09/0.2-0.4 TP10/0.0-0.2 TP11/0.0-0.2 TP13/0.0-0.2 TP14/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2 TP15/0.0-0.2	SE153862.008 SE153862.009 SE153862.010 SE153862.011 SE153862.012 SE153862.013 SE153862.014 SE153862.015 SE153862.016 SE153862.017 SE153862.018 SE153862.019	% % % % % % %	70 - 130% 70 - 130%	76 78 82 76 78 80 76 76 76 74 76 82

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

aramotor	Sample Name	Sample Number	Linito	Critorio	E-(AU)-[ENV]AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
fluorobiphenyl (Surrogate)	TP21/0.0-0.2	SE153862.024	%	70 - 130%	78
	TP22/0.0-0.2	SE153862.025	%	70 - 130%	78
	TP23/0.0-0.2	SE153862.026	%	70 - 130%	78
	TP24/0.0-0.2	SE153862.028	%	70 - 130%	76
	TP25/0.0-0.2	SE153862.029	%	70 - 130%	76
	TP25/0.4-0.6	SE153862.030	%	70 - 130%	78
	DUP01	SE153862.032	%	70 - 130%	78
	Dup03	SE153862.035	%	70 - 130%	82
14-p-terphenyl (Surrogate)	TP01/0.0-0.2	SE153862.001	%	70 - 130%	90
	TP02/0.0-0.2	SE153862.002	%	70 - 130%	90
	TP03/0.0-0.2	SE153862.003	%	70 - 130%	92
	TP04/0.05-0.25	SE153862.004	%	70 - 130%	94
	TP05/0.05-0.25	SE153862.005	%	70 - 130%	84
	TP06/0.0-0.2	SE153862.006	%	70 - 130%	86
	TP07/0.0-0.2	SE153862.007	%	70 - 130%	90
	TP08/0.05-0.25	SE153862.008	%	70 - 130%	88
	TP09/0.0-0.2	SE153862.009			
			%	70 - 130%	86
	TP09/0.2-0.4	SE153862.010	%	70 - 130%	88
	TP10/0.0-0.2	SE153862.011	%	70 - 130%	94
	TP11/0.0-0.2	SE153862.012	%	70 - 130%	88
	TP12/0.05-0.25	SE153862.013	%	70 - 130%	88
	TP13/0.0-0.2	SE153862.014	%	70 - 130%	90
	TP14/0.0-0.2	SE153862.015	%	70 - 130%	82
	TP15/0.0-0.2	SE153862.016	%	70 - 130%	78
	TP15/0.45-0.65	SE153862.017	%	70 - 130%	72
	TP16/0.0-0.2	SE153862.018	%	70 - 130%	76
	TP17/0.0-0.2	SE153862.019	%	70 - 130%	72
	TP18/0.0-0.2	SE153862.020	%	70 - 130%	72
	TP18/0.2-0.4	SE153862.021	%	70 - 130%	84
	TP19/0.0-0.2	SE153862.022	%	70 - 130%	76
	TP20/0.0-0.2	SE153862.023	%	70 - 130%	74
	TP21/0.0-0.2	SE153862.024	%	70 - 130%	80
	TP22/0.0-0.2	SE153862.025	%	70 - 130%	70
	TP23/0.0-0.2	SE153862.026	%	70 - 130%	70
			%		
	TP24/0.0-0.2	SE153862.028		70 - 130%	78
	TP25/0.0-0.2	SE153862.029	%	70 - 130%	72
	TP25/0.4-0.6	SE153862.030	%	70 - 130%	72
	DUP01	SE153862.032	%	70 - 130%	74
	Dup03	SE153862.035	%	70 - 130%	86
-nitrobenzene (Surrogate)	TP01/0.0-0.2	SE153862.001	%	70 - 130%	76
	TP02/0.0-0.2	SE153862.002	%	70 - 130%	76
	TP03/0.0-0.2	SE153862.003	%	70 - 130%	80
	TP04/0.05-0.25	SE153862.004	%	70 - 130%	84
	TP05/0.05-0.25	SE153862.005	%	70 - 130%	74
	TP06/0.0-0.2	SE153862.006	%	70 - 130%	74
	TP07/0.0-0.2	SE153862.007	%	70 - 130%	78
	TP08/0.05-0.25	SE153862.008	%	70 - 130%	74
	TP09/0.0-0.2	SE153862.009	%	70 - 130%	74
	TP09/0.2-0.4	SE153862.010	%	70 - 130%	76
	TP10/0.0-0.2	SE153862.011	%	70 - 130%	78
	TP11/0.0-0.2	SE153862.012	%	70 - 130%	74
	TP12/0.05-0.25	SE153862.013	%	70 - 130%	74
	TP13/0.0-0.2	SE153862.014	%	70 - 130%	76
	TP14/0.0-0.2	SE153862.015	%	70 - 130%	74
	TP15/0.0-0.2	SE153862.016	%	70 - 130%	70
	TP15/0.45-0.65	SE153862.017	%	70 - 130%	70
	TP16/0.0-0.2	SE153862.018	%	70 - 130%	70
	TP17/0.0-0.2	SE153862.019	%	70 - 130%	72
	TP18/0.0-0.2	SE153862.020	%	70 - 130%	72
	TP18/0.2-0.4	SE153862.021	%	70 - 130%	70

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d5-nitrobenzene (Surrogate)	TP20/0.0-0.2	SE153862.023	%	70 - 130%	70
	TP21/0.0-0.2	SE153862.024	%	70 - 130%	70
	TP22/0.0-0.2	SE153862.025	%	70 - 130%	72
	TP23/0.0-0.2	SE153862.026	%	70 - 130%	72
	TP24/0.0-0.2	SE153862.028	%	70 - 130%	72
	TP25/0.0-0.2	SE153862.029	%	70 - 130%	70
	TP25/0.4-0.6	SE153862.030	%	70 - 130%	70
	DUP01	SE153862.032	%	70 - 130%	70
	Dup03	SE153862.035	%	70 - 130%	78
20Pe in Seil					
PCBs in Soil				Method: ME-(AU)-[I	-
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP01/0.0-0.2	SE153862.001	%	60 - 130%	71
	TP03/0.0-0.2	SE153862.003	%	60 - 130%	70
	TP07/0.0-0.2	SE153862.007	%	60 - 130%	70
	TP11/0.0-0.2	SE153862.012	%	60 - 130%	70
	TP14/0.0-0.2	SE153862.015	%	60 - 130%	72
	TP15/0.0-0.2	SE153862.016	%	60 - 130%	70
	TP15/0.45-0.65	SE153862.017	%	60 - 130%	71
	TP19/0.0-0.2	SE153862.022	%	60 - 130%	72
	TP22/0.0-0.2	SE153862.025	%	60 - 130%	71
	TP24/0.0-0.2	SE153862.028	%	60 - 130%	70
	DUP01	SE153862.032	%	60 - 130%	70
	50.01	02100002.002	,,,		
'OC's in Soil				Method: ME	-(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	TP01/0.0-0.2	SE153862.001	%	60 - 130%	81
	TP03/0.0-0.2	SE153862.003	%	60 - 130%	77
	TP07/0.0-0.2	SE153862.007	%	60 - 130%	87
	TP11/0.0-0.2	SE153862.012	%	60 - 130%	76
	TP14/0.0-0.2	SE153862.015	%	60 - 130%	76
	TP15/0.0-0.2	SE153862.016	%	60 - 130%	85
	TP15/0.45-0.65	SE153862.017	%	60 - 130%	84
	TP19/0.0-0.2	SE153862.022	%	60 - 130%	80
	TP22/0.0-0.2	SE153862.025	%	60 - 130%	84
	TP24/0.0-0.2	SE153862.028	%	60 - 130%	75
	DUP01	SE153862.026	%	60 - 130%	83
		· · · · · · · · · · · · · · · · · · ·			
	TRIP BLANK	SE153862.033	%	60 - 130%	96
		SE153862.034	%	60 - 130%	112
d4-1,2-dichloroethane (Surrogate)	TP01/0.0-0.2	SE153862.001	%	60 - 130%	88
	TP03/0.0-0.2	SE153862.003	%	60 - 130%	86
	TP07/0.0-0.2	SE153862.007	%	60 - 130%	97
	TP11/0.0-0.2	SE153862.012	%	60 - 130%	87
	TP14/0.0-0.2	SE153862.015	%	60 - 130%	86
	TP15/0.0-0.2	SE153862.016	%	60 - 130%	96
	TP15/0.45-0.65	SE153862.017	%	60 - 130%	94
	TP19/0.0-0.2	SE153862.022	%	60 - 130%	93
	TP22/0.0-0.2	SE153862.025	%	60 - 130%	95
	TP24/0.0-0.2	SE153862.028	%	60 - 130%	89
	DUP01	SE153862.032	%	60 - 130%	92
	TRIP BLANK	SE153862.033	%	60 - 130%	106
	TRIP SPIKE	SE153862.034	%	60 - 130%	72
d8-toluene (Surrogate)	TP01/0.0-0.2	SE153862.001	%	60 - 130%	86
ao tolacho (ourroyate)	TP01/0.0-0.2 TP03/0.0-0.2	SE153862.001 SE153862.003	%	60 - 130%	80
	TP07/0.0-0.2	SE153862.007	%	60 - 130%	95
	TP11/0.0-0.2	SE153862.012	%	60 - 130%	84
	TP14/0.0-0.2	SE153862.015	%	60 - 130%	85
	TP15/0.0-0.2	SE153862.016	%	60 - 130%	91
	TP15/0.45-0.65	SE153862.017	%	60 - 130%	90
	TP19/0.0-0.2	SE153862.022	%	60 - 130%	89
	TP22/0.0-0.2	SE153862.025	%	60 - 130%	92
		SE153862.028	%	60 - 130%	84

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Sample Name Units Criteria Parameter Sample Number d8-toluene (Surrogate) DUP01 SE153862.032 % 60 - 130% 86 TRIP BLANK SE153862.033 60 - 130% % 101 TRIP SPIKE SE153862.034 % 60 - 130% 76 Dibromofluoromethane (Surrogate) TP01/0.0-0.2 SE153862.001 60 - 130% 84 % TP03/0.0-0.2 SE153862.003 60 - 130% 81 % TP07/0.0-0.2 SE153862.007 % 60 - 130% 93 TP11/0.0-0.2 SE153862.012 % 60 - 130% 86 TP14/0.0-0.2 SE153862.015 % 60 - 130% 84 TP15/0.0-0.2 SE153862.016 % 60 - 130% 92 TP15/0.45-0.65 SE153862.017 60 - 130% 92 % TP19/0.0-0.2 SE153862.022 % 60 - 130% 90 TP22/0.0-0.2 SE153862.025 % 60 - 130% 92 TP24/0.0-0.2 SE153862.028 % 60 - 130% 86 DUP01 SE153862.032 60 - 130% 87 % TRIP BLANK SE153862.033 % 60 - 130% 100 TRIP SPIKE SE153862.034 60 - 130% 84 % Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Units Parameter Sample Name Sample Num Criteria Recovery % Bromofluorobenzene (Surrogate) TP01/0.0-0.2 SE153862.001 % 60 - 130% 81 TP03/0.0-0.2 SE153862.003 % 60 - 130% 77 TP07/0.0-0.2 SE153862.007 60 - 130% 87 % TP11/0.0-0.2 SE153862.012 % 60 - 130% 76 TP14/0.0-0.2 SE153862.015 60 - 130% 76 % TP15/0.0-0.2 SE153862.016 60 - 130% 85 % TP15/0.45-0.65 SE153862.017 % 60 - 130% 84 TP19/0.0-0.2 SE153862.022 60 - 130% 80 % TP22/0.0-0.2 SE153862.025 % 60 - 130% 84 TP24/0.0-0.2 SE153862.028 % 60 - 130% 75 DUP01 SE153862.032 % 60 - 130% 83 d4-1,2-dichloroethane (Surrogate) TP01/0.0-0.2 SE153862.001 60 - 130% 88 % TP03/0.0-0.2 SE153862.003 % 60 - 130% 86 TP07/0.0-0.2 SE153862.007 % 60 - 130% 97 TP11/0.0-0.2 SE153862.012 % 60 - 130% 87 TP14/0.0-0.2 SE153862.015 % 60 - 130% 86 TP15/0.0-0.2 SE153862.016 % 60 - 130% 96 TP15/0.45-0.65 SE153862.017 60 - 130% 94 % TP19/0.0-0.2 SE153862.022 % 60 - 130% 93 TP22/0.0-0.2 SE153862.025 % 60 - 130% 95 TP24/0.0-0.2 SE153862.028 % 60 - 130% 89 DUP01 SE153862.032 % 60 - 130% 92 d8-toluene (Surrogate) TP01/0.0-0.2 SE153862.001 60 - 130% 86 % 84 TP03/0.0-0.2 SE153862.003 60 - 130% % TP07/0.0-0.2 SE153862.007 % 60 - 130% 95 TP11/0.0-0.2 SE153862.012 60 - 130% 84 % TP14/0.0-0.2 SE153862.015 60 - 130% 85 % SE153862.016 60 - 130% TP15/0.0-0.2 % 91 TP15/0.45-0.65 SE153862.017 % 60 - 130% 90 TP19/0.0-0.2 SE153862.022 % 60 - 130% 89 TP22/0.0-0.2 SE153862.025 % 60 - 130% 92 TP24/0.0-0.2 SE153862.028 % 60 - 130% 84 DUP01 SE153862.032 % 60 - 130% 86 TP01/0.0-0.2 SE153862.001 Dibromofluoromethane (Surrogate) % 60 - 130% 84 TP03/0.0-0.2 SE153862.003 % 60 - 130% 81 TP07/0.0-0.2 SE153862.007 % 60 - 130% 93 TP11/0.0-0.2 SE153862.012 % 60 - 130% 86 TP14/0.0-0.2 SE153862.015 60 - 130% 84 % TP15/0.0-0.2 SE153862.016 60 - 130% 92 % SE153862.017 TP15/0.45-0.65 % 60 - 130% 92 TP19/0.0-0.2 SE153862.022 % 60 - 130% 90 TP22/0.0-0.2 SE153862.025 60 - 130% % 92

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AI					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	TP24/0.0-0.2	SE153862.028	%	60 - 130%	86
	DUP01	SE153862.032	%	60 - 130%	87

METHOD BLANKS

SE153862 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchangeable Cation Exchangeable Cations and Cation Exchangeable Cations and Cation Exchangeable Cations and Cations a	cchange Capacity (CEC/ESP/SAR)		Method: ME-(AU)-[ENV]AN122
Sample Number	Parameter	Units	LOR

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN31
Sample Number	Parameter	Units	LOR	Result
LB104133.001	Mercury	mg/kg	0.01	<0.01
LB104134.001	Mercury	mg/kg	0.01	<0.01

ample Number 3104115.001	Parameter Hexachlorobenzene (HCB)	Units mg/kg	LOR	Result
3104115.001		malka		
		iiig/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin		0.2	<0.2
		mg/kg		
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	103
04116.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD		0.2	<0.2
		mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg		
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OP Pesticides in Soil

P Pesticides in Soil				Method. ME-	(AU)-[ENV]AN400/
Sample Number		Parameter	Units	LOR	Result
B104115.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	78
		d14-p-terphenyl (Surrogate)	%	-	78
B104116.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	72
		d14-p-terphenyl (Surrogate)	%	-	108
H (Polynuclear Aron	natic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]
ample Number		Parameter	Units	LOR	Result
3104115.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1

		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	70
		2-fluorobiphenyl (Surrogate)	%	-	78
		d14-p-terphenyl (Surrogate)	%	-	78
LB104116.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1

Chrysene

<0.1

mg/kg

0.1

METHOD BLANKS

SE153862 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aro	AH (Polynuclear Aromatic Hydrocarbons) in Soli (continued)			Method: ME-(AU)-[ENV]AN42	
Sample Number		Parameter	Units	LOR	Result
LB104116.001		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	78
		2-fluorobiphenyl (Surrogate)	%	-	72
		d14-p-terphenyl (Surrogate)	%	-	108
PCBs in Soil				Method: ME-	(AU)-[ENV]AN400/AN420

PCBs in Soil

			ואפעוטע. אוב-(אט)-נבוזע אוזידטטאוזיב		
Sample Number		Parameter	Units	LOR	Result
LB104115.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	103
_B104116.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	72

Method: ME-(AU)-[ENV]AN040/AN320 Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES Sample Number LOR Parameter Units Result LB104167.001 Arsenic, As 3 <3 mg/kg Cadmium, Cd mg/kg 0.3 < 0.3 Chromium, Cr 0.3 <0.3 mg/kg Copper, Cu 0.5 <0.5 mg/kg Lead, Pb mg/kg 1 <1 Nickel, Ni 0.5 <0.5 mg/kg Zinc, Zn 0.5 <0.5 mg/kg LB104168.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd 0.3 <0.3 mg/kg 0.3 <0.3 Chromium, Cr mg/kg Copper, Cu mg/kg 0.5 < 0.5 Lead, Pb <1 mg/kg 1 Nickel, Ni 0.5 <0.5 mg/kg Zinc, Zn mg/kg 0.5 <0.5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

	,			
Sample Number	Parameter	Units	LOR	Result
LB104115.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110
LB104116.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

METHOD BLANKS

Method: ME-(AU)-[ENV]AN403 LOR Result

Method: ME-(AU)-[ENV]AN433

<110

Units

mg/kg

110

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number Parameter LB104116.001 TRH C10-C36 Total VOC's in Soil Sa LI

Sample Number		Parameter	Units	LOR	Result
LB103967.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	95
		d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	93
		Bromofluorobenzene (Surrogate)	%	-	83
	Totals	Total BTEX	mg/kg	0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433	
Sample Number		Parameter	Units	LOR	Result
LB103967.001		TRH C6-C9	mg/kg	20	<20

Sample Number	

Sample Number		Parameter	Units	LOR	Result
LB103967.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	95
		d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	93

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil							Meth	od: ME-(AU)	-IENVIAN31
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE153862.007	LB104133.014		Mercury		0.01	<0.01	<0.01	200	0
SE153862.007	LB104133.014		Mercury	mg/kg	0.01	0.04	0.04	167	0
SE153862.016	LB104133.024			mg/kg		0.04	0.04	187	0
SE153862.026 SE154007.003			Mercury	mg/kg	0.01			200	0
	LB104134.024		Mercury	mg/kg	0.01	<0.01	<0.01		
Moisture Content							Meth	od: ME-(AU)	-[ENV]AN0
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE153862.010	LB104014.011		% Moisture	%w/w	0.5	20	20	35	2
SE153862.020	LB104014.022		% Moisture	%w/w	0.5	28	29	34	5
SE153862.030	LB104014.033		% Moisture	%w/w	0.5	19	15	36	21
SE153862.035	LB104014.037		% Moisture	%w/w	0.5	19	19	35	0
OC Pesticides in S	oil						Method: ME	-(AU)-[ENV]A	N400/AN4
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE153862.016	LB104116.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.11	0.105	30	0
OP Pesticides in S	oil							-(AU)-[ENV]A	
			Demonster	11 14		Oniminal		• • •	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD %
SE153862.007	LB104115.027		Dichlorvos	mg/kg	0.5	<0.5	0.05	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0.01	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0.11	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.46	30	2
SE153862.032	LB104116.026		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
							-		

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

							Method: ME-		
Priginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E153862.032	LB104116.026		Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	_	0.4	0.41	30	5
		3	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.36	30	3
						0.1			
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	[ENV]A
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E153862.007	LB104115.027		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	C
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	C
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	(
			Acenaphthene	mg/kg	0.1	<0.1	0	200	
			Fluorene	mg/kg	0.1	<0.1	0	200	
			Phenanthrene		0.1	<0.1	0	200	
				mg/kg					
			Anthracene	mg/kg	0.1	<0.1	0	200	
			Fluoranthene	mg/kg	0.1	<0.1	0	200	
			Pyrene	mg/kg	0.1	<0.1	0	200	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0	200	
			Chrysene	mg/kg	0.1	<0.1	0	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.39	30	
		Surroyates			-				
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.46	30	
153862.014	LB104115.025		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene		0.1	<0.1	<0.1	200	
				mg/kg					
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

		ons) in Soil (continu	· · · · · · · · · · · · · · · · · · ·						[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE153862.014	LB104115.025	Surrogates	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	2
SE153862.019	LB104116.025		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0	200	0
			Anthracene	mg/kg	0.1	<0.1	0	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0	200	0
			Chrysene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
					0.1	<0.1	0.01	200	0
			Benzo(a)pyrene	mg/kg					
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.37	30	3
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.43	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.42	30	15
SE153862.032	LB104116.026		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.01	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene		0.1	<0.1	0.09	200	0
				mg/kg					
			Anthracene	mg/kg	0.1	<0.1	0.02	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.14	155	33
			Pyrene	mg/kg	0.1	<0.1	0.12	173	18
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.07	200	0
			Chrysene	mg/kg	0.1	<0.1	0.05	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.05	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.02	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.2	<0.2	0.121	200	0
		Surrogates	d5-nitrobenzene (Surrogate)		-	0.4	0.20	30	6
		Surroyates		mg/kg	-				
			2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.41	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.36	30	3
CBs in Soil							Method: ME	-(AU)-[ENV]A	N400/A
Driginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD
SE153862.016	LB104116.025		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochior 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221 Arochlor 1232		0.2	<0.2	0	200	0
				mg/kg			0		0
			Arochlor 1242	mg/kg	0.2	<0.2		200	
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0

Method: ME_(ALI)_TENV/AN400/AN420

32

1

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

pН

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (continued)

SE153990.017

	andeu)						Mediou. ML		4400/74442
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE153862.016	LB104116.025		Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.105	30	0
pH in soil (1:5)							Meth	od: ME-(AU)-	ENVJAN1
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE153990.014	LB104154.014		рН	pH Units	-	7.9	7.9	31	1

pH Units

4.3

4.2

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

LB104154.018

Driginal	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E153862.007	LB104167.014	Arsenic, As	mg/kg	3	8	8	42	6
		Cadmium, Cd	mg/kg	0.3	0.5	0.4	97	5
		Chromium, Cr	mg/kg	0.3	15	15	33	4
		Copper, Cu	mg/kg	0.5	24	24	32	2
		Lead, Pb	mg/kg	1	21	19	35	9
		Nickel, Ni	mg/kg	0.5	5.1	4.5	40	14
		Zinc, Zn	mg/kg	0.5	33	29	36	11
E153862.016	LB104167.024	Arsenic, As	mg/kg	3	8	8	43	4
		Cadmium, Cd	mg/kg	0.3	0.6	0.7	76	2
		Chromium, Cr	mg/kg	0.3	18	17	33	6
		Copper, Cu	mg/kg	0.5	28	27	32	6
		Lead, Pb	mg/kg	1	48	50	32	4
		Nickel, Ni	mg/kg	0.5	9.4	8.5	36	10
		Zinc, Zn	mg/kg	0.5	99	96	32	2
E153862.026	LB104168.014	Arsenic, As	mg/kg	3	7	7	44	10
		Cadmium, Cd	mg/kg	0.3	0.7	0.4	82	59
		Chromium, Cr	mg/kg	0.3	13	13	34	4
		Copper, Cu	mg/kg	0.5	21	25	32	18
		Lead, Pb	mg/kg	1	25	22	34	13
		Nickel, Ni	mg/kg	0.5	8.7	8.8	36	2
		Zinc, Zn	mg/kg	0.5	45	42	35	8
E154007.003	LB104168.024	Arsenic, As	mg/kg	3	9	10	41	5
		Cadmium, Cd	mg/kg	0.3	0.4	0.4	105	14
		Chromium, Cr	mg/kg	0.3	19	20	33	7
		Copper, Cu	mg/kg	0.5	2.8	3.3	46	19
		Lead, Pb	mg/kg	1	16	17	36	6
		Nickel, Ni	mg/kg	0.5	1.6	1.7	61	5
		Zinc, Zn	mg/kg	0.5	6.2	6.5	61	4

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE153862.007	LB104115.027		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE153862.032	LB104116.025		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

RH (Total Recov	erable Hydrocarbons) in Soil (continued)					Meth	od: ME-(AU)-	ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE153862.032	LB104116.025	TRH F Bands	TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
/OC's in Soil							Meth	od: ME-(AU)-	ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE153862.028	LB103967.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	4.2	50	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	4.3	50	3
			d8-toluene (Surrogate)	mg/kg	-	4.2	4.0	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	3.8	50	3
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE153862.032	LB103967.021	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0.02	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0.04	200	0
			o-xylene	mg/kg	0.1	<0.1	0.02	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	_	4.4	3.97	50	10
			d4-1,2-dichloroethane (Surrogate)	mg/kg	_	4.6	4.22	50	8
			d8-toluene (Surrogate)	mg/kg	_	4.3	4.3	50	0
			Bromofluorobenzene (Surrogate)	mg/kg	_	4.2	4.16	50	0
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	0.06	200	0
			Total BTEX	mg/kg	0.6	<0.6	0.08	200	0
/olatile Petroleum	Hydrocarbons in Soi	1			0.0	0.0		od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE153862.028	LB103967.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
02100002.020	20100001.014		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	- 20	4.3	4.2	30	4
		ounogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		4.4	4.3	30	3
			d4 1,2 demolocatione (editogate)			4.4		30	4
			d8-toluene (Surrogate)		_	42	4.0		
			d8-toluene (Surrogate)	mg/kg	-	4.2	4.0		
		VPH F Bands	Bromofluorobenzene (Surrogate)	mg/kg mg/kg	-	3.7	3.8	30	3
		VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg mg/kg mg/kg	- 0.1	3.7 <0.1	3.8 <0.1	30 200	3 0
SF153862.032	I B103967 021	VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg	- 0.1 25	3.7 <0.1 <25	3.8 <0.1 <25	30 200 200	3 0 0
SE153862.032	LB103967.021	VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25	3.7 <0.1 <25 <25	3.8 <0.1 <25 0	30 200 200 200	3 0 0 0
SE153862.032	LB103967.021		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25 20	3.7 <0.1 <25 <25 <20	3.8 <0.1 <25 0 0	30 200 200 200 200	3 0 0 0 0
SE153862.032	LB103967.021	VPH F Bands Surrogates	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25 20 -	3.7 <0.1 <25 <25 <20 4.4	3.8 <0.1 <25 0 0 3.97	30 200 200 200 200 30	3 0 0 0 0 10
SE153862.032	LB103967.021		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25 20 -	3.7 <0.1 <25 <25 <20 4.4 4.6	3.8 <0.1 <25 0 0 3.97 4.22	30 200 200 200 200 200 30 30	3 0 0 0 0 10 8
SE153862.032	LB103967.021		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25 20 - -	3.7 <0.1 <25 <25 <20 4.4 4.6 4.3	3.8 <0.1 <25 0 0 3.97 4.22 4.3	30 200 200 200 200 30 30 30 30	3 0 0 0 0 10 8 0
SE153862.032	LB103967.021		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25 20 -	3.7 <0.1 <25 <25 <20 4.4 4.6	3.8 <0.1 <25 0 0 3.97 4.22	30 200 200 200 200 200 30 30	3 0 0 0 0 10 8

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cations	Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)						
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB104232.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	86
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	82
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	81
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	80
Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB104133.002	Mercury	mg/kg	0.01	0.20	0.2	70 - 130	102
LB104134.002	Mercury	ma/ka	0.01	0.21	0.2	70 - 130	107

OC Pesticides in Soil

Sample Number	Soil	Parameter	Units	LOR	Result	Expected	Critoria %	/JAN400/AN42 Recovery %
								,
B104115.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	120
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	122
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	123
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	120
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	124
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	87
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	101
LB104116.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	90
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	95
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	88
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	92
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	87
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	76
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.11	0.15	40 - 130	72
P Pesticides in S	Soil					Method:	ME-(AU)-[EN	/JAN400/AN4:
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB104115.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	92
0104113.002		Diazinon (Dimpylate)	mg/kg	0.5	1.5	2	60 - 140	75
				0.2		2		73
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg		1.4	2	60 - 140	
	0	Ethion	mg/kg	0.2	1.5		60 - 140	74
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
_B104116.002		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	79
		Diazinon (Dimpylate)	mg/kg	0.5	1.5	2	60 - 140	77
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.5	2	60 - 140	77
		Ethion	mg/kg	0.2	1.6	2	60 - 140	78
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	76
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	76
AH (Polynuclear	Aromatic Hydroca	arbons) in Soil				N	lethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB104115.002		Naphthalene	mg/kg	0.1	3.8	4	60 - 140	96
		Acenaphthylene	mg/kg	0.1	3.9	4	60 - 140	97
		Acenaphthene	mg/kg	0.1	3.8	4	60 - 140	96
		Phenanthrene	mg/kg	0.1	4.0	4	60 - 140	100
		Anthracene	mg/kg	0.1	4.0	4	60 - 140	100
		Fluoranthene	mg/kg	0.1	3.9	4	60 - 140	98
		Pyrene	mg/kg	0.1	3.8	4	60 - 140	95
		Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	100
	Surrogates			-	0.4	0.5	40 - 130	72
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg					
		2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.5	40 - 130	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
_B104116.002		Naphthalene	mg/kg	0.1	3.7	4	60 - 140	93
		Acenaphthylene	mg/kg	0.1	3.7	4	60 - 140	93
		Acenaphthene	mg/kg	0.1	3.8	4	60 - 140	94
		Phenanthrene	mg/kg	0.1	3.3	4	60 - 140	84
		Phenanthrene Anthracene	mg/kg mg/kg	0.1	3.3 3.7	4	60 - 140 60 - 140	84 92

SE153862 R1

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

PAH (Polynuclear A	romatic Hydroc	arbons) in Soil (continued)				N	dethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB104116.002		Benzo(a)pyrene	mg/kg	0.1	4.1	4	60 - 140	102
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	72
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	76
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	76
PCBs in Soll						Method:	ME-(AU)-[EN\	/JAN400/AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB104115.002		Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	118
LB104116.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	102

pH in soil (1:5)

pH in soil (1:5)					N	/lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB104154.003	pН	pH Units	-	7.5	7.415	98 - 102	101

Units LOR Result Expected Criteria % Recovery % Sample Number Parameter LB104167.002 Arsenic, As 3 51 50 80 - 120 mg/kg Cadmium, Cd mg/kg 0.3 51 50 80 - 120 Chromium, Cr mg/kg 0.3 49 50 80 - 120 Copper, Cu mg/kg 0.5 50 50 80 - 120 Lead, Pb 80 - 120 50 50 mg/kg 1 Nickel, Ni mg/kg 0.5 50 50 80 - 120 Zinc, Zn 0.5 50 50 80 - 120 mg/kg LB104168.002 80 - 120 Arsenic, As 52 50 mg/kg 3 Cadmium, Cd mg/kg 0.3 52 50 80 - 120 Chromium, Cr mg/kg 0.3 50 50 80 - 120 80 - 120 0.5 51 50 Copper, Cu mg/kg Lead Ph mg/kg 1 51 50 80 - 120 Nickel, Ni 0.5 51 50 80 - 120 mg/kg Zinc, Zn 0.5 52 50 80 - 120 mg/kg TRH (Total Recoverable Hydrocarbons) in Soli Method: ME-(AU)-[ENV]AN403 Sample Number Expected Criteria % Recovery % Parameter Units LOR Result LB104115.002 TRH C10-C14 20 36 40 60 - 140 mg/kg TRH C15-C28 45 <45 40 60 - 140 ma/ka

		TRH C15-C28	mg/kg	45	<45	40	60 - 140	88
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	85
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	38	40	60 - 140	95
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	85
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	90
LB104116.002		TRH C10-C14	mg/kg	20	36	40	60 - 140	90
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	88
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Method: ME-(AU)-[ENV]AN040/AN320

102

101

99

100

99

99

100

104

104

101

102

101

101

103

90

Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB103967.002	Monocyclic	Benzene	mg/kg	0.1	1.8	2.9	60 - 140	61
	Aromatic	Toluene	mg/kg	0.1	2.6	2.9	60 - 140	90
		Ethylbenzene	mg/kg	0.1	1.8	2.9	60 - 140	62
		m/p-xylene	mg/kg	0.2	4.1	5.8	60 - 140	71
		o-xylene	mg/kg	0.1	1.9	2.9	60 - 140	65
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	5	60 - 140	79
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	83
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	83
		Bromofluorobenzene (Surrogate)	mg/kg	-	6.3	5	60 - 140	127

Sample Number	Parameter	Units	LOR

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/olatile Petroleum H	lydrocarbons in S	ioil (continued)				N	Method: ME-(A	E-(AU)-[ENV]AN43	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB103967.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	80	
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	69	
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	5	60 - 140	79	
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	83	
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	83	
		Bromofluorobenzene (Surrogate)	mg/kg	-	6.3	5	60 - 140	127	
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	104	

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN312

Mercury in Soil						Meth	nod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE153806.001	LB104133.004	Mercury	mg/kg	0.01	0.21	0.01	0.2	97
SE153862.017	LB104134.004	Mercury	mg/kg	0.01	0.20	<0.01	0.2	99

OC Pesticides in Soil

esticides in	Soll						Method: I	ME-(AU)-[ENV]A
ample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
3804.002	LB104115.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	<0.1	0.2	120
			Aldrin	mg/kg	0.1	<0.1	0.2	122
			Beta BHC	mg/kg	0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	<0.1	0.2	122
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	0.2	116
			Endrin	mg/kg	0.2	<0.2	0.2	123
			o,p'-DDD	mg/kg	0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	108
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	-	106

OP Pesticides in	P Pesticides in Soil M								
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE153804.001	LB104115.026		Dichlorvos	mg/kg	0.5	<0.5	2	95	
			Dimethoate	mg/kg	0.5	<0.5	-	-	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	84	
			Fenitrothion	mg/kg	0.2	<0.2	-	-	
			Malathion	mg/kg	0.2	<0.2	-	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	94	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	
			Methidathion	mg/kg	0.5	<0.5	-	-	
			Ethion	mg/kg	0.2	<0.2	2	79	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	
Surrogates		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	78	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	86	
SE153862.017	LB104116.027		Dichlorvos	mg/kg	0.5	<0.5	2	74	
			Dimethoate	mg/kg	0.5	<0.5	-	-	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	75	
			Fenitrothion	mg/kg	0.2	<0.2	-	-	
			Malathion	mg/kg	0.2	<0.2	-	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	76	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	
			Methidathion	mg/kg	0.5	<0.5	-	-	
			Ethion	mg/kg	0.2	<0.2	2	91	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	Soil (continued)							ME-(AU)-[ENV]
Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
153862.017	LB104116.027	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	80
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	74
ł (Polynuclea	r Aromatic Hydrocarbo	ons) in Soil					М	ethod: ME-(AU)
Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
153804.001	LB104115.026		Naphthalene	mg/kg	0.1	<0.1	4	97
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	0.1	4	98
			Acenaphthene	mg/kg	0.1	<0.1	4	99
			Fluorene	mg/kg	0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	0.3	4	96
			Anthracene	mg/kg	0.1	<0.1	4	98
			Fluoranthene	mg/kg	0.1	1.1	4	95
			Pyrene	mg/kg	0.1	1.1	4	91
			Benzo(a)anthracene	mg/kg	0.1	0.7	-	_
			Chrysene	mg/kg	0.1	0.6	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.9	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	0.4	-	-
			Benzo(a)pyrene	mg/kg	0.1	0.8	4	95
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	0.4	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>1.0</td><td>-</td><td>-</td></lor=0<>	TEQ	0.2	1.0	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.1</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	1.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.1</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	1.1	-	-
			Total PAH (18)	mg/kg	0.8	6.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	72
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	78
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	86
3862.017	LB104116.027		Naphthalene	mg/kg	0.1	<0.1	4	95
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	_	-
			Acenaphthylene	mg/kg	0.1	<0.1	4	95
			Acenaphthene	mg/kg	0.1	<0.1	4	96
			Fluorene	mg/kg	0.1	<0.1		-
			Phenanthrene	mg/kg	0.1	<0.1	4	95
			Anthracene	mg/kg	0.1	<0.1	4	97
			Fluoranthene	mg/kg	0.1	<0.1	4	107
			Pyrene	mg/kg	0.1	<0.1	4	107
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1		_
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1		-
			Benzo(k)fluoranthene		0.1	<0.1		-
			Benzo(a)pyrene	mg/kg mg/kg	0.1	<0.1	4	103
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.1</td><td><0.1</td><td>-</td><td>-</td></lor=0<>	TEQ	0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-
							-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	
		Cumper-t	Total PAH (18)	mg/kg	0.8	<0.8		-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	74
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	80
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	74
in Soil							Method: I	ME-(AU)-[ENV]A
Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
3804.002	LB104115.026		Arochlor 1016	mg/kg	0.2	<0.2	-	-
-			Arochlor 1221	mg/kg	0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	-	-
					5.2	5.2		

mg/kg

0.2

< 0.2

Arochlor 1242

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Set 15804 0.00HIGH 15 0.07Anomote 124	PCBs in Soil (cor	ntinued)						Method: N	/E-(AU)-[ENV]	AN400/AN4
Anoton 10%mpin mpinmpin <th>QC Sample</th> <th>Sample Number</th> <th></th> <th>Parameter</th> <th>Units</th> <th>LOR</th> <th>Original</th> <th>Spike</th> <th>Recovery%</th> <th>b</th>	QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	b
Anchor 130 mpig 0.2 0.2 0.2 0.1 0 Anchor 138 mpig 0.2 0.2 0.2 0.0 0	SE153804.002	LB104115.026		Arochlor 1248	mg/kg	0.2	<0.2	-	-	
Avointe 1282mpg0.20.920.920.920.920.92SamegieTad PCBs (Nochore)mpg0.10.10.10.10.10.1Call PCBs (Nochore)mpg0.1 <td></td> <td></td> <td></td> <td>Arochlor 1254</td> <td>mg/kg</td> <td>0.2</td> <td><0.2</td> <td>-</td> <td>-</td> <td></td>				Arochlor 1254	mg/kg	0.2	<0.2	-	-	
Anomin 1984mgs mgs mgs0.2.0.2SumgsineTeachbirs-n-yieue (TCMX) (Surrogale)mgk mgs0.20.20.20.0C2 SampleSample NumberPatenterName <td< td=""><td></td><td></td><td></td><td>Arochlor 1260</td><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.4</td><td>116</td><td></td></td<>				Arochlor 1260	mg/kg	0.2	<0.2	0.4	116	
Instant PCB (worknom)mpg1-1-read PCB (worknom)imbore (CMM) (Surragete)mpg00000columnSold-Material by CPCSmpg0.8No				Arochlor 1262	mg/kg	0.2	<0.2	-	-	
SurrigateTetrahlors n-sylene (TCMS) (Surrigate)mg/s-0-100table NourbersSample NumberParameterNumber (Networks)Number (Networks)				Arochlor 1268	mg/kg	0.2	<0.2	-	-	
Sample Number Parameter Units LOR Result Original Spike Recult Spike Spike <td></td> <td></td> <td></td> <td>Total PCBs (Arochlors)</td> <td>mg/kg</td> <td>1</td> <td><1</td> <td>-</td> <td>-</td> <td>]</td>				Total PCBs (Arochlors)	mg/kg	1	<1	-	-]
CC Sample Sample Number Parameter Units LOR Result Original Spike Record SE 15306.01 Li 104197.004 Asseine.As mg/g 3 51 12 50 7 SE 15306.01 Li 104197.004 Result Original Spike Result 01 50 7 Commun, Cr mg/g 0.3 42 0.3 60 60 7 Open, Cu mg/g 0.3 49 0.0 50 7 Lead, Pb mg/g 1 10 74 60 67 Toke.N mg/g 3 49 0 50 70 SE 153862.01 LB 104168.04 mg/g 0.3 44 0.3 66 12 60 <td></td> <td></td> <td>Surrogates</td> <td>Tetrachloro-m-xylene (TCMX) (Surrogate)</td> <td>mg/kg</td> <td>-</td> <td>0</td> <td>-</td> <td>100</td> <td>]</td>			Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	100]
E15390.01 LB104167.034 Arenic, As mghq 3 51 12 50 7 Cadminin, Cd mghq 0.3 42 40.3 60 7 Coper, Cu mghq 0.3 42 40.3 60 7 Coper, Cu mghq 0.5 50 10 70 76 Niele, Ni mghq 0.5 10 10 74 60 60 SE15362.07 LB104168.04 Main 7 60 70 60 70	otal Recoverab	le Metals in Soil/Was	te Solids/Materia	s by ICPOES				Method: M	/E-(AU)-[ENV]	AN040/AN
	QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
	SE153806.001	LB104167.004		Arsenic, As	mg/kg	3	51	12	50	78
Set SBS2.01 Single Number Ground, Cr. mg/a 0.0 4.0 5.0				Cadmium, Cd		0.3	42	<0.3	50	84
Set is based of the set of the				Chromium, Cr		0.3	49	10	50	77
Set 5382.017 LB104188.004				Copper, Cu		0.5	50	10	50	79
NetworkNickel Nng/kg0.54.31.96.01.00SE 15362.017LB 104168.004Aranic, A/ang/kg0.54.001.005.020Chroniun, Cdng/kg0.54.000.51.005.020Chroniun, Cdng/kg0.51.005.01.00<				Lead, Pb		1	110	74	50	67 ④
Zinc, Zn mg/g 0.5 140 120 60 32 SE 153862.017 LB 104186.04 Assenic, As mg/g 0.3 44 0.3 50 66 0.8 Commun, Cr mg/g 0.3 56 1.2 50 68 Coper, Cu mg/g 0.5 72 2.4 50 68 Coper, Cu mg/g 0.5 49 5.2 60 68 60 68 60 68 60 68 <						0.5	43	1.9		82
SE15382.017 LB104188.004 Ranic, As mg/kg 3 40 6 50 80 Chronium, Cr mg/kg 0.3 56 12 50 60 Chronium, Cr mg/kg 0.5 72 24 50 60 Coper, Cu mg/kg 0.5 72 24 50 60 Nodel, Nic mg/kg 0.5 55 61 20 60				Zinc, Zn			140	120		32 ④
Sample Number Parameter Cadimium, Cd mg/kg 0.3 44 0.3 50 68 Copper, Cu mg/kg 0.5 672 24 50 68 Copper, Cu mg/kg 0.5 672 24 50 68 Micel, Ni mg/kg 0.5 40 52 50 68 Zin, Ca mg/kg 0.5 40 52 50 68 Cols Moli Zin, Ca mg/kg 0.5 40 52 60 68 Cols Moli Zin, Ca mg/kg 0.5 40 52 50 68 Cols Moli Monocytic Benzene mg/kg 0.1 19 <0.1	SE153862.017	LB104168.004					49			86
Chronium, Cr mgkg 0.3 56 12 50 56 Copper, Cu mgkg 0.5 72 24 60 66 Lead, Pb mgkg 0.5 72 24 60 66 Dickel, Ni mgkg 0.5 40 5.2 60 68 OC's In Soll Dickel, Ni mgkg 0.5 40 5.2 60 68 OC's In Soll Sample Number Parameter Parameter Units LOR Result Original Spike Record St 53862.001 LB103967.004 Monocycle Benzone mgkg 0.1 1.9 <0.1										88
Coper. Cu mg/kg 0.5 72 24 50 50 Led. Pb mg/kg 1 57 16 50 86 Nickel, Ni mg/kg 0.5 49 52 50 86 Zin, Zn mg/kg 0.5 49 52 50 86 CO'en Sol CO'en Sol Units LOR Result Original Spike Recol SE 15362.001 LB10367.004 Monocit Banzene mg/kg 0.1 1.9 9.1 2.9 6 Monocit Banzene mg/kg 0.1 2.0 4.0 2.9 6 m/sylene mg/kg 0.1 2.0 4.0 2.9 6 m/sylene mg/kg 0.1 2.0 4.0 2.9 6 m/sylene mg/kg 0.1 0.0 0.0 0.1 2.0 7.0 strongate Bibrounorethane (Surogate)				· · · · · · · · · · · · · · · · · · ·						87
Lead. Pb mg/kg 1 57 16 50 68 Nickel, Ni mg/kg 0.5 49 5.2 50 61 CC's In Soll DC mg/kg 0.5 49 5.2 50 61 CC's In Soll DC Sample Number Parameter Units LOR Result Original Spike Record SE 153862.001 LB103967.004 Benzene mg/kg 0.1 1.9 <0.1										95
Nickel, Ni mg/kg 0.5 49 5.2 50 88 Zho, Zh mg/kg 0.5 95 41 60 1 OC's In Soll Sample Number Parameter Units CAR Result Original Spike Recur Noncyclic Result Original Spike Recur 0.1 1.9 <0.1										81
Zinc, Zn mg/kg 0.5 95 41 50 41 OC's In Soll Sample Number Parameter Units LOR Result Original Spike Recourt SE 135862.01 LB103967.04 Monocyclic Berzene mg/kg 0.1 1.9 -0.1 2.9 60 Ethylbenzene mg/kg 0.1 2.0 -0.1 2.9 60 m/p-xylene mg/kg 0.1 2.0 -0.1 2.9 60 m/p-xylene mg/kg 0.1 2.0 -0.1 2.9 60 m/p-xylene mg/kg 0.1 2.0 -0.1 2.9 60 Monocyclic Naphthalene mg/kg 0.1 -0.1										88
OC's in Soll Sample Sample Number Parameter Units LOR Result Original Spike Recoult Spike Recoult Original Spike Recoult Original Spike Recoult Original Spike Recoult Spike Recoult Original Spike Recoult										107
QC Sample Sample Numbor Parameter Units LOR Result Original Spike Record SE153862.001 LB103967.004 Monocyclic Benzene mg/kg 0.1 1.9 <0.1 2.9 60 Aromatic Toluene mg/kg 0.1 2.8 <0.1 2.9 60 Ethylbenzene mg/kg 0.1 2.8 <0.1 2.9 60 m/p-xylene mg/kg 0.1 2.0 <0.1 2.9 60 Polycyclic Naphthalene mg/kg 0.1 2.0 <0.1 2.9 70 Polycyclic Naphthalene mg/kg 0.1 <0.1 <0.1 <- 70 Surogates Bitomoflucromethane (Surogate) mg/kg 4.3 4.4 80 de1oluene (Surogate) mg/kg 6.3 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.	'OC's in Soil			210, 21		0.0				
SE153862.001 LB103967.004 Monocyclic Aromatic Benzene mg/kg 0.1 1.9 <0.1 2.9 6 Aromatic Toluene mg/kg 0.1 2.8 <0.1		Sample Number		Parameter	Units	LOR	Result			Recove
Aromatic Toluene mg/kg 0.1 2.8 <0.1 2.9 9 Eftylenzene mg/kg 0.1 2.0 <0.1										64
kink Ethylbenzene mg/kg 0.1 2.0 <0.1	02100002.001	20100001.001								95
Normal Section Normal			, a official							69
o-xylene mg/kg 0.1 2.2 2.9 7 Polycyclic Naphtalene mg/kg 0.1										79
Polycycic Napithalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1										75
Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.2 4.2 - 4.2 44.1,2-dichloroethane (Surrogate) mg/kg - 4.3 4.4 - 8 d8-toluene (Surrogate) mg/kg - 4.5 4.3 4.4 - 8 Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 6 Totals Total Xylenes* mg/kg 0.6 13 <0.6			Polycyclic							15
d4-1,2-dichloroethane (Surrogate) mg/kg - 4.3 4.4 - 88 d8-toluene (Surrogate) mg/kg - 4.5 4.3 - 99 Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 11 Totals Total Xylenes* mg/kg 0.3 6.8 <0.3										- 84
d8-toluene (Surrogate) mg/kg - 4.5 4.3 - 9 Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 11 11 11 11 11 11 11 11 -			Surrogates							
Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 11 Totals Total Xylenes* mg/kg 0.3 6.8 <0.3				· · · · · · · · · · · · · · · · · · ·						87
Totals Total Xylenes* mg/kg 0.3 6.8 <0.3 - Total BTEX mg/kg 0.6 13 <0.6										90
Total BTEX mg/kg 0.6 13 <0.6 Oldtille Petroleum Hydrocarbons in Soil Ket-(AU)-[ENV] Ket-(AU)-[ENV] Ket-(AU)-[ENV] QC Sample Sample Number Parameter Units LOR Result Original Spike Reco SE153862.001 LB103967.004 TRH C6-C10 mg/kg 25 <25										127
Method: IME-(AU)-[ENV] QC Sample Sample Number Parameter Units LOR Result Original Spike Record SEI 53862.001 LB103967.004 TRH C6-C10 mg/kg 25 <25			lotals							-
QC Sample Sample Number Parameter Units LOR Result Original Spike Record SE153862.001 LB103967.004 TRH C6-C10 mg/kg 25 <25				Total BTEX	mg/kg	0.6	13			-
SE153862.001 LB103967.004 TRH C6-C10 mg/kg 25 <25 <26 24.65 88 TRH C6-C9 mg/kg 20 <20		-		Devenue	11		Denvilé			
TRH C6-C9 mg/kg 20 <20 23.2 66 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.2 4.2 - 88 d4-1,2-dickloroethane (Surrogate) mg/kg - 4.3 4.4 - 88 d8-toluene (Surrogate) mg/kg - 4.5 4.3 - 98 Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 12 VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1		•								Recove 80
Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.2 4.2 - 88 d4-1,2-dichloroethane (Surrogate) mg/kg - 4.3 4.4 - 88 d8-toluene (Surrogate) mg/kg - 4.5 4.3 - 98 Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 12 VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1	3002.001	LD103907.004								
d4-1,2-dichloroethane (Surrogate) mg/kg - 4.3 4.4 - 88 d8-toluene (Surrogate) mg/kg - 4.5 4.3 - 98 Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 12 VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1										68
d8-toluene (Surrogate) mg/kg - 4.5 4.3 - 9 Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 12 VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1			Surrogates							84
Bromofluorobenzene (Surrogate) mg/kg - 6.3 4.1 - 12 VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1										87
VPH F Benzene (F0) mg/kg 0.1 1.9 <0.1 -										90
										127
			VPH F Bands	Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<0.1	- 7.25	-

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Abanish Nepal	Manager	Huong Crawford
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9427 8100	Telephone	+61 2 8594 0400
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499
Email	anepal@slrconsulting.com	Email	au.environmental.sydney@sgs.com
Project	610.15583.00200 - Edensor Park	SGS Reference	SE153862 R1
Order Number	21055	Date Received	21 Jun 2016
Samples	28	Date Reported	29 Jun 2016

COMMENTS ·

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No.SE153862 R0 issued by SGS Environment, Heath and Safety due to amended job description.

% Clay subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

Kamrul Ahsan

Senior Chemist

No respirable fibres detected in soil samples using trace analysis technique.

Sample #23: 2-6mm length fibre bundles found in 6x4mm cement sheet fragment.

Asbestos analysed by Approved Identifiers Ravee Sivasubramaniam and Yusuf Kuthpudin .

SIGNATORIES -

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

St Alexandria & Rd BC Alexandria

Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

kmln

Ly Kim Ha

Organic Section Head

594 0400 www.sgs.com.au 594 0499

Member of the SGS Group

ANALYTICAL REPORT

Fibre Identifica	tion in soil				Method AN602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification
SE153862.001	TP01/0.0-0.2	Soil	32g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.002	TP02/0.0-0.2	Soil	36g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.003	TP03/0.0-0.2	Soil	28g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.004	TP04/0.05-0.25	Soil	28g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.005	TP05/0.05-0.25	Soil	57g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.006	TP06/0.0-0.2	Soil	34g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.007	TP07/0.0-0.2	Soil	38g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.008	TP08/0.05-0.25	Soil	41g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.009	TP09/0.0-0.2	Soil	53g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.010	TP09/0.2-0.4	Soil	42g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.011	TP10/0.0-0.2	Soil	41g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.012	TP11/0.0-0.2	Soil	39g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.013	TP12/0.05-0.25	Soil	24g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.014	TP13/0.0-0.2	Soil	42g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.015	TP14/0.0-0.2	Soil	30g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.016	TP15/0.0-0.2	Soil	50g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.018	TP16/0.0-0.2	Soil	31g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.019	TP17/0.0-0.2	Soil	32g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.020	TP18/0.0-0.2	Soil	26g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.022	TP19/0.0-0.2	Soil	36g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.023	TP20/0.0-0.2	Soil	39g Clay, Sand, Rocks	20 Jun 2016	Amosite, Chrysotile & Crocidolite Asbestos Found Organic Fibres Detected
SE153862.024	TP21/0.0-0.2	Soil	52g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.025	TP22/0.0-0.2	Soil	35g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.026	TP23/0.0-0.2	Soil	34g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.028	TP24/0.0-0.2	Soil	43g Clay, Rocks	20 Jun 2016	No Asbestos Found
SE153862.029	TP25/0.0-0.2	Soil	45g Clay, Sand, Rocks	20 Jun 2016	No Asbestos Found
SE153862.030	TP25/0.4-0.6	Soil	39g Clay	20 Jun 2016	No Asbestos Found

ANALYTICAL REPORT

RESULTS -	k materials				Method AN602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification
SE153862.031	TP20/PACM	Other	60x20x4mm cement sheet fragment x2	20 Jun 2016	Amosite, Chrysotile & Crocidolite Asbestos Detected

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

SGS				(СНА	IN (OF (CUS	τοι	DY 8	λ Α	NAL	YS	SIS I	REQ	UEST				Page5 of _5	
SGS Environmental	Services	Compar	ny Nar	ne	SLR Consulting								-	Project Name/No: 610 15583 002				15593	00000		
Unit 16, 33 Maddox S		Address	Address. 2 Lincoln Street							_		-	-	the second se) – Edensor Park Eurofins PO 21056	
Alexandria NSW 201					Lane	Cove	NSW	2066		_			-	-		quired By:		ndard	1055, 1		
Telephone No: (02) 8													-		phone:		-	8 178 9	915		
	acsimile No: (02) 85940499				Abar	ish Ne	epal						-		simile:		_	427 82			
Email: au.samplereceipt.s	ydney@sgs.con	n											-	Ema	il Resu	lts:				Iting com pdecilya@clreapeulting com	
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	PAH/METALS	Asbestos (Presence / Absence)	ВТЕХ	TRH/BTEX/PAH/Metals	% CLAY	CEC	НЧ		НОГР			epal@strconsulting.com ndesitva@strconsulting.c			
TP20/PACM	20-6-16		1	1	Ice	1		X	_		0.			-	1			-	-		
DUP01	20-6-16		+	X	Ice	1	-	-		x	_		-	-	1			1	-		
DUP01A	20-6-16		-	X	Ice	1	-			x		-	-	-	-			1			
DUP02	20-6-16		-	X	Ice						-	-		-	- · · ·					Please send to Eurofins	
DUP02A	20-6-16		-	X	lce	1	-					-			×						
DUP03	20-6-16	2	-	X	lce	1	-				1				x						
DUP03A	20-6-16			X	1	1	-								X				1.1		
TRIP BLANK	16-6-16		<u> </u>	x	lce					-					X						
TRIP SPIKE	16-6-16		-		Ice	1			X												
	10-0-10	_		X	Ice	1			X												
Palinguished By: Abaniah	Negal	1			k								_					1		505355	
elinquished By: Abanish Nepal Date/Time										R	eceiv	ed By	Si'e	ahig	K	47	1	Date/T	ime 🙎	16 1515	
				_	06/201							ed By				~		Date/T		1	
Samples Intact: Yes / No			perat	ure	Ambie	nt / Cl	hlled			Sa	ample	e Cool	er Se	aled.	Yes/	No	L	abora	itory Q	Quotation No: SLR Pricing 2015	
		Comments: Methods and detection limits to suit NEF											Quotation No: SER Pricing 2015 Quotation No:								

AU.SampleReceipt.Sydney (Sydney)

From:Abanish Nepal [anepal@slrconsulting com]Sent:Wednesday, 22 June 2016 5:28 AMTo:AU.SampleReceipt.Sydney (Sydney)Cc:Crawford, Huong (Sydney); Ellerington, Trent (Sydney)Subject:Re: 610.14889 & 610.15583 COCs

Hi Team

Could also analyse DUP03 for PAH/Metals and send DUP03A (both samples for our project 610.15583 Esensor Park) to Eurofins for the same analysis?

Kind Regards Abanish Nepal Senior Consultant - Land Quality and Remediation

On 21 Jun 2016, at 2:30 PM, Abanish Nepal <anopal@slcconsulting.com> wrote:

Abanish Nepal Senior Consultant – Land Quality and Remediation SLR Consulting Australia Pty Ltd

Email: Additionanopales (sconsulting.com Mob: +61 448 178 915 Tel: +61 2 9427 8100 Fax: +61 2 9427 8200

2 Lincoln Street, Lane Cove NSW 2066, Australia

www.slrconsulting.com

Confidentiality Notice and Disclaimer

This communication and any

MUX#505355

attachment(s) contains information which is confidential and may also be legally privileged. It is intended for the exclusive use of the recipient(s) to whom it is addressed. If you are not the intended recipient, any disclosure, copying, distribution or any action taken or omitted to be taken in reliance on it, is prohibited and may be unlawful. If you have received this communication in error please email us by return mail and then delete the email from your system together with any copies of it. Please note that you are not permitted to print, copy, disclose or use part or all of the content in any way.

Emails and any information transmitted thereunder may be intercepted, corrupted or delayed. As a result, SLR does not accept any responsibility for any errors or omissions howsoever caused and SLR accepts no responsibility for changes made to this email or any attachment after transmission from SLR. Whilst all reasonable endeavours are taken by SLR to screen all emails for known viruses, SLR cannot guarantee that any transmission will be virus free.

Any views or opinions are solely those of the author and do not necessarily represent those of SLR Management Ltd, or any of its subsidiaries, unless specifically stated.

ABN - 50 005 085 521

mgt

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	SLR Consulting (Sydney)
Contact name:	Abanish Nepal
Project name:	EDENSOR PARK
Project ID:	610.15583.00200
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Jun 22, 2016 3:15 PM
Eurofins mgt reference:	505355

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Andrew Black on Phone : (+61) 2 9900 8490 or by e.mail: AndrewBlack@eurofins.com Results will be delivered electronically via e.mail to Abanish Nepal - anepal@slrconsulting.com.

38 Years of Environmental Analysis & Experience

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad Pro	mpany Name: dress: oject Name: oject ID:	SLR Consult 2 Lincoln St Lane Cove V NSW 2066 EDENSOR F 610.15583.0	Vest PARK				Re	der N port : ione: ix:	#:	50	1056 05355 2 9423		0	Received:Jun 22, 2016 3:15 PMDue:Jun 29, 2016Priority:5 DayContact Name:Abanish NepalEurofins mgt Analytical Services Manager : Andrew Black
	Sample Detail					Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	BTEX	Moisture Set	Total Recoverable Hydrocarbons	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	.71										
	ney Laboratory					X	Х	X	Х	Х	Х	Х	X	
	Brisbane Laboratory - NATA Site # 20794 External Laboratory												-	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	DUP01A	Jun 20, 2016		Soil	S16-Jn20606	х	Х	Х	х	х	Х	Х	х	
2	DUP03A	Jun 20, 2016		Soil	S16-Jn20607	х				Х		Х		
Test	Counts					2	1	1	1	2	1	2	1	

SLR Consulting 2 Lincoln St Lane Cove West NSW 2066

eurofins

Attention:

Abanish Nepal

Report Project name Project ID Received Date **505355-S** EDENSOR PARK 610.15583.00200 Jun 22, 2016

Client Sample ID			DUP01A	DUP03A
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S16-Jn20606	S16-Jn20607
Date Sampled			Jun 20, 2016	Jun 20, 2016
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract		C int		
TRH C6-C9	20	mg/kg	< 20	-
TRH C10-C14	20	mg/kg	44	-
TRH C15-C28	50	mg/kg	61	-
TRH C29-C36	50	mg/kg	51	-
TRH C10-36 (Total)	50	mg/kg	156	-
BTEX				
Benzene	0.1	mg/kg	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	79	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5

NATA

WORLD RECOGNISED

עיוייא

ace MR/

4 Julia

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			DUP01A Soil	DUP03A Soil
Eurofins mgt Sample No.			S16-Jn20606	S16-Jn20607
Date Sampled			Jun 20, 2016	Jun 20, 2016
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	91	102
p-Terphenyl-d14 (surr.)	1	%	102	112
Organochlorine Pesticides	0.4		0.4	
Chlordanes - Total	0.1	mg/kg	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-
	0.05	mg/kg	< 0.05	-
	0.05	mg/kg	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-
g-BHC (Lindane) Heptachlor	0.05	mg/kg	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-
Methoxychlor	0.03	mg/kg	< 0.05	-
, ,	1	mg/kg		-
Toxaphene Dibutylchlorendate (surr.)	1	mg/kg %	< 1 107	-
Tetrachloro-m-xylene (surr.)	1	%	107	-
Organophosphorus Pesticides		/0	127	-
	0.2	mallea	.0.2	
Azinphos-methyl Bolstar	0.2	mg/kg	< 0.2	-
	0.2	mg/kg	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-
Coumaphos Demeton-S	0.2	mg/kg	< 2	-
Demeton-S Demeton-O	0.2	mg/kg	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	-
Diazinon Dichlorvos	0.2	mg/kg	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-
EPN		mg/kg		
	0.2	mg/kg	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	-
Ethoprop Ethyl parathion	0.2	mg/kg	< 0.2	-
Ethyl parathion		mg/kg		
Fenitrothion Fensulfothion	0.2	mg/kg mg/kg	< 0.2	-

Client Sample ID			DUP01A	DUP03A
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S16-Jn20606	S16-Jn20607
Date Sampled			Jun 20, 2016	Jun 20, 2016
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Fenthion	0.2	mg/kg	< 0.2	-
Malathion	0.2	mg/kg	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	-
Monocrotophos	2	mg/kg	< 2	-
Omethoate	2	mg/kg	< 2	-
Phorate	0.2	mg/kg	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-
Triphenylphosphate (surr.)	1	%	119	-
Polychlorinated Biphenyls	1	,,		
Aroclor-1016	0.5	mg/kg	< 0.5	_
Aroclor-1221	0.0	mg/kg	< 0.1	-
Aroclor-1232	0.5	mg/kg	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	-
Dibutylchlorendate (surr.)	1	%	107	-
Tetrachloro-m-xylene (surr.)	1	%	127	-
Total Recoverable Hydrocarbons - 2013 NE		70		
TRH >C10-C16	50	mg/kg	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-
Heavy Metals	1 100	1 <u>9</u> /y		
Arsenic	2	mg/kg	9.3	7.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	19	16
Copper	5	mg/kg	28	16
Lead	5	mg/kg	61	15
Mercury	0.05	mg/kg	0.05	< 0.05
Nickel	5		11	7.3
Zinc	5	mg/kg	130	28
	D	mg/kg	130	20
% Moisture		%	24	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Total Recoverable Hydrocarbons - 1999 NEPM FractionsSydneyJun 27, 201614 Day- Method: TRH C6-C36 - LTM-ORG-2010Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010The C6-C40 - LTM-ORG-2010Hethod: TRH C6-C40 - LTM-ORG-201014 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 27, 201614 Day- Method: E007 Polyaromatic HydrocarbonsSydneyJun 27, 201614 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)Organochlorine PesticidesSydneyJun 27, 201614 Day- Method: E013 Organochlorine PesticidesSydneyJun 27, 201614 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJun 27, 201614 Day- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201628 Day- Method: E013 Polychlorinated BiphenylsSydneyJun 25, 201628 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJun 25, 201614 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJun 25, 201614 Day	Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 25, 201614 DayBTEXSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 25, 201614 DayPolycyclic Aromatic HydrocarbonsSydneyJun 27, 201614 Day- Method: E007 Polyaromatic HydrocarbonsSydneyJun 27, 201614 Day- Method: E007 Polyaromatic HydrocarbonsSydneyJun 27, 201614 Day- Method: E013 Organochlorine PesticidesSydneyJun 27, 201614 Day- Method: E013 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201614 Day- Method: LTM-ORG-200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201628 Day- Method: E013 Polychlorinated BiphenylsSydneyJun 27, 201628 Day- Method: LTM-ORG-2010 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201628 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day- Method: E117 - Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJun 25, 201628 Day	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 27, 2016	14 Day
· Method: TRH C6-C40 - LTM-ORG-2010Jun 25, 201614 Day· Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 25, 201614 DayBTEXSydneyJun 25, 201614 Day· Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 25, 201614 DayPolycyclic Aromatic HydrocarbonsSydneyJun 27, 201614 Day· Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 27, 201614 Day· Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJun 27, 201614 Day· Method: E013 Organochlorine Pesticides (OC)Unu 27, 201614 Day· Method: LTM-ORG-2020 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201614 Day· Method: E013 Polychlorinated BiphenylsSydneyJun 27, 201628 Day· Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day· Method: LTM-ORG-200 Organophosplorus Pesticides AND MERCURY IN WATERS BY ICP-MSJun 25, 201628 Day	- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 25, 201614 DayBTEXSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 27, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 27, 201614 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJun 27, 201614 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJun 27, 201614 Day- Method: LTM-ORG-200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201614 Day- Method: LTM-ORG-200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201628 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJun 25, 201628 Day	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 25, 2016	14 Day
Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 25, 201614 DayBTEXSydneyJun 25, 201614 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJun 27, 201614 DayPolycyclic Aromatic HydrocarbonsSydneyJun 27, 201614 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)Organochlorine PesticidesSydneyJun 27, 201614 Day- Method: E013 Organochlorine Pesticides (OC)Organophosphorus Pesticides (OC)Jun 27, 201614 Day- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201614 DayPolychlorinated BiphenylsSydneyJun 27, 201628 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJun 25, 201628 Day	- Method: TRH C6-C40 - LTM-ORG-2010			
BTEXSydneyJun 25, 201614 Day• Method: TRH C6-C40 - LTM-ORG-2010Polycyclic Aromatic HydrocarbonsSydneyJun 27, 201614 DayPolycyclic Aromatic Hydrocarbons (PAH)SydneyJun 27, 201614 Day• Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJun 27, 201614 Day• Method: E013 Organochlorine Pesticides (OC)SydneyJun 27, 201614 Day• Method: E013 Organophosphorus Pesticides (OC)SydneyJun 27, 201614 Day• Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201628 Day• Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day• Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJun 25, 201628 Day	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 25, 2016	14 Day
 Method: TRH C6-C40 - LTM-ORG-2010 Polycyclic Aromatic Hydrocarbons Method: E007 Polyaromatic Hydrocarbons (PAH) Organochlorine Pesticides Method: E013 Organochlorine Pesticides (OC) Organophosphorus Pesticides OCrganophosphorus Pesticides by GC-MS Polychlorinated Biphenyls Method: E013 Polychlorinated Biphenyls (PCB) Method: E013 Polychlorinated Biphenyls (PCB) Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 	- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic HydrocarbonsSydneyJun 27, 201614 Day• Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJun 27, 201614 Day• Organochlorine PesticidesSydneyJun 27, 201614 Day• Method: E013 Organochlorine Pesticides (OC)• Organophosphorus PesticidesSydneyJun 27, 201614 Day• Method: E013 Organophosphorus Pesticides by GC-MS• Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201628 Day• Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day• Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS	BTEX	Sydney	Jun 25, 2016	14 Day
 Method: E007 Polyaromatic Hydrocarbons (PAH) Organochlorine Pesticides Method: E013 Organochlorine Pesticides (OC) Organophosphorus Pesticides Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS Polychlorinated Biphenyls Method: E013 Polychlorinated Biphenyls (PCB) Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 	- Method: TRH C6-C40 - LTM-ORG-2010			
Organochlorine PesticidesSydneyJun 27, 201614 Day• Method: E013 Organochlorine Pesticides (OC)SydneyJun 27, 201614 Day• Organophosphorus PesticidesSydneyJun 27, 201614 Day• Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MSSydneyJun 27, 201628 Day• Method: E013 Polychlorinated Biphenyls (PCB)SydneyJun 25, 201628 Day• Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJun 25, 201628 Day	Polycyclic Aromatic Hydrocarbons	Sydney	Jun 27, 2016	14 Day
 Method: E013 Organochlorine Pesticides (OC) Organophosphorus Pesticides (OC) Organophosphorus Pesticides (OC) Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS Polychlorinated Biphenyls Method: E013 Polychlorinated Biphenyls (PCB) Metals M8 Sydney Jun 27, 2016 28 Day Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 	- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organophosphorus Pesticides Sydney Jun 27, 2016 14 Day • Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS - - - - Polychlorinated Biphenyls Sydney Jun 27, 2016 28 Day • Method: E013 Polychlorinated Biphenyls (PCB) Sydney Jun 25, 2016 28 Day • Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS - - -	Organochlorine Pesticides	Sydney	Jun 27, 2016	14 Day
 Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS Polychlorinated Biphenyls Method: E013 Polychlorinated Biphenyls (PCB) Metals M8 Sydney Jun 27, 2016 28 Day 28 Day Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 	- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls Sydney Jun 27, 2016 28 Day - Method: E013 Polychlorinated Biphenyls (PCB) Sydney Jun 25, 2016 28 Day Metals M8 Sydney Jun 25, 2016 28 Day - Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS Sydney Jun 25, 2016 28 Day	Organophosphorus Pesticides	Sydney	Jun 27, 2016	14 Day
Method: E013 Polychlorinated Biphenyls (PCB) Metals M8 Sydney Jun 25, 2016 28 Day Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS	- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Metals M8 Sydney Jun 25, 2016 28 Day • Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 5 Day	Polychlorinated Biphenyls	Sydney	Jun 27, 2016	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS	- Method: E013 Polychlorinated Biphenyls (PCB)			
-	Metals M8	Sydney	Jun 25, 2016	28 Day
% Mojeturo Sydnov Jup 22 2016 14 Dov	- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
% Noisture Sydney Sun 22, 2010 14 Day	% Moisture	Sydney	Jun 22, 2016	14 Day
- Method: LTM-GEN-7080 Moisture	- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad	Company Name: SLR Consulting (Sydney) Address: 2 Lincoln St Lane Cove West NSW 2066							Order No.: 21056 Report #: 505355 Phone: 02 9428 8100 Fax: 6000000000000000000000000000000000000						Received:Jun 22, 2016 3:15 PMDue:Jun 29, 2016Priority:5 DayContact Name:Abanish Nepal
	Project Name:EDENSOR PARKProject ID:610.15583.00200													
														Eurofins mgt Analytical Services Manager : Andrew Black
	Sample Detail					Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	BTEX	Moisture Set	Total Recoverable Hydrocarbons	
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271										
	ney Laboratory					Х	Х	X	Х	Х	Х	Х	Х	X
	bane Laboratory		20794											
No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID									
	•	-	Sampling Time											
1		Jun 20, 2016		Soil	S16-Jn20606	Х	Х	X	Х	Х	Х	Х	Х	X
2		Jun 20, 2016		Soil	S16-Jn20607	X				Х		Х		
Test	Counts					2	1	1	1	2	1	2	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Bla	nk In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surro	ogate The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Dupl	icate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIK	E Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		· · ·			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin		< 0.05	0.05	Pass	
	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde Endrin ketone	mg/kg			Pass	
	mg/kg	< 0.05	0.05		
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank		1		1	
Polychlorinated Biphenyls		0.5		Deres	
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank				1	
Total Recoverable Hydrocarbons - 2013 NEPM				_	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank				1	
Heavy Metals				-	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	

Test	t		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Zinc			mg/kg	< 5		5	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	tions						
TRH C10-C14			%	98		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
Chlordanes - Total			%	106		70-130	Pass	
4.4'-DDD			%	111		70-130	Pass	
4.4'-DDE			%	106		70-130	Pass	
4.4'-DDT			%	96		70-130	Pass	
a-BHC			%	108		70-130	Pass	
Aldrin			%	110		70-130	Pass	
b-BHC			%	117		70-130	Pass	
d-BHC			%	113		70-130	Pass	
Dieldrin			%	104		70-130	Pass	
Endosulfan I			%	105		70-130	Pass	
Endosulfan II			%	105		70-130	Pass	
Endosulfan sulphate			%	106		70-130	Pass	
Endrin			%	110		70-130	Pass	
Endrin aldehyde			%	97		70-130	Pass	
Endrin ketone			%	99		70-130	Pass	
g-BHC (Lindane)			%	108		70-130	Pass	
Heptachlor			%	97		70-130	Pass	
Heptachlor epoxide			%	104		70-130	Pass	
Hexachlorobenzene			%	90		70-130	Pass	
Methoxychlor			%	95		70-130	Pass	
LCS - % Recovery				-		1		
Polychlorinated Biphenyls							_	
Aroclor-1260			%	86		70-130	Pass	
LCS - % Recovery				1	1	1	I	
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	tions						
TRH >C10-C16			%	104		70-130	Pass	
LCS - % Recovery								
Heavy Metals			0/	07		70.400	Dese	
Arsenic			%	97		70-130	Pass	
Cadmium			%	105		70-130	Pass	
Chromium			%	97		70-130	Pass	
Copper			% %	98		70-130	Pass	
Lead			%	105		70-130	Pass	
Mercury Nickel			%	109 98		70-130 70-130	Pass Pass	
Zinc			%	98		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Pass Limits	Qualifying Code
Spike - % Recovery				I	<u> </u>			
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	tions		Result 1				
TRH C6-C9	S16-Jn22086	NCP	%	81		70-130	Pass	
TRH C10-C14	S16-Jn19199	NCP	%	71		70-130	Pass	
Spike - % Recovery	•			·	· ·			
Polycyclic Aromatic Hydrocarbo	ons			Result 1				
Acenaphthene	S16-Jn20606	CP	%	100		70-130	Pass	
Acenaphthylene	S16-Jn20606	СР	%	90		70-130	Pass	
Anthracene	S16-Jn20606	СР	%	98		70-130	Pass	
Benz(a)anthracene	S16-Jn20606	СР	%	100		70-130	Pass	
Benzo(a)pyrene	S16-Jn20606	CP	%	89		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene	S16-Jn20606	СР	%	83			70-130	Pass	
Benzo(g.h.i)perylene	S16-Jn20606	CP	%	86			70-130	Pass	
Benzo(k)fluoranthene	S16-Jn20606	CP	%	106			70-130	Pass	
Chrysene	S16-Jn20606	CP	%	115			70-130	Pass	
Dibenz(a.h)anthracene	S16-Jn20606	CP	%	77			70-130	Pass	
Fluoranthene	S16-Jn20606	CP	%	108			70-130	Pass	
Fluorene	S16-Jn20606	CP	%	97			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S16-Jn20606	CP	%	82			70-130	Pass	
Naphthalene	S16-Jn20606	CP	%	104			70-130	Pass	
Phenanthrene	S16-Jn20606	CP	%	124			70-130	Pass	
Pyrene	S16-Jn20606	CP	%	117			70-130	Pass	
Spike - % Recovery									
Organochlorine Pesticides				Result 1					
Chlordanes - Total	S16-Jn20755	NCP	%	93			70-130	Pass	
4.4'-DDD	S16-Jn24451	NCP	%	119			70-130	Pass	
4.4'-DDE	S16-Jn20755	NCP	%	95			70-130	Pass	
4.4'-DDT	S16-Jn24451	NCP	%	110			70-130	Pass	
a-BHC	S16-Jn20755	NCP	%	86			70-130	Pass	
Aldrin	S16-Jn20755	NCP	%	90			70-130	Pass	
b-BHC	S16-Jn20755	NCP	%	89			70-130	Pass	
Endosulfan I	S16-Jn20755	NCP	%	91			70-130	Pass	
Endosulfan II	S16-Jn20755	NCP	%	97			70-130	Pass	
Endosulfan sulphate	S16-Jn20755	NCP	%	97			70-130	Pass	
Endrin	S16-Jn20755	NCP	%	86			70-130	Pass	
Endrin ketone	S16-Jn20755	NCP	%	106			70-130	Pass	
Heptachlor	S16-Jn24451	NCP	%	103			70-130	Pass	
Hexachlorobenzene	S16-Jn20755	NCP	%	74			70-130	Pass	
Methoxychlor	S16-Jn24451	NCP	%	84			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S16-Jn23537	NCP	%	92			70-130	Pass	
Cadmium	S16-Jn23537	NCP	%	98			70-130	Pass	
Chromium	S16-Jn23537	NCP	%	94			70-130	Pass	
Copper	S16-Jn23537	NCP	%	89			70-130	Pass	
Lead	S16-Jn23537	NCP	%	96			70-130	Pass	
Mercury	S16-Jn23537	NCP	%	94			70-130	Pass	
Nickel	S16-Jn23537	NCP	%	91			70-130	Pass	
Zinc	S16-Jn23537	NCP	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1				
Total Recoverable Hydrocarbons		1		Result 1	Result 2	RPD			
TRH C6-C9	S16-Jn22085	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S16-Jn22112	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Jn22112	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Jn22112	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				1	1				
ВТЕХ		1		Result 1	Result 2	RPD			
Benzene	S16-Jn22085	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S16-Jn22085	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S16-Jn22085	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S16-Jn22085	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S16-Jn22085	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
e rigiene			3.3	-	-				

Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Eract	ions		Result 1	Result 2	RPD			
Naphthalene	S16-Jn22085	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S16-Jn22085	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	310-3122003		піу/ку	< 20	< 20	<1	30 /6	газэ	
Polycyclic Aromatic Hydrocarbor	~			Result 1	Result 2	RPD			
Acenaphthene	S16-Jn23370	NCP	malka	< 0.5	< 0.5	<1	30%	Pass	
•		NCP	mg/kg						
Acenaphthylene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Jn23370 S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene			mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-Jn23370	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							_	1	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S16-Jn20106	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Jn20106	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Jn20106	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-Jn20106	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				1					
Organophosphorus Pesticides	1			Result 1	Result 2	RPD			
Azinphos-methyl	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S16-Jn20606	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticid	les			Result 1	Result 2	RPD			
Dichlorvos	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S16-Jn20606	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S16-Jn20606	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S16-Jn20606	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S16-Jn20606	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Omethoate	S16-Jn20606	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S16-Jn20606	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S16-Jn20606	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S16-Jn20606	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S16-Jn20606	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				-					
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S16-Jn20106	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S16-Jn20106	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S16-Jn20106	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S16-Jn20106	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S16-Jn20106	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S16-Jn20106	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S16-Jn20106	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Fotal Recoverable Hydrocar	bons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Jn22112	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Jn22112	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S16-Jn22112	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Jn20606	CP	%	24	22	12	30%	Pass	
Duplicate					·				
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Jn20607	СР	mg/kg	7.7	7.6	2.0	30%	Pass	
Cadmium	S16-Jn20607	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Jn20607	CP	mg/kg	16	15	8.0	30%	Pass	
Copper	S16-Jn20607	CP	mg/kg	16	16	1.0	30%	Pass	
Lead	S16-Jn20607	CP	mg/kg	15	15	1.0	30%	Pass	
Mercury	S16-Jn20607	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	010-01120001								
Nickel	S16-Jn20607	CP	mg/kg	7.3	7.1	2.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

 N02
 all QAQC acceptance criteria, and are entirely technically valid.

 F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Analytical Services Manager				
Senior Analyst-Inorganic (NSW)				
Senior Analyst-Metal (NSW)				
Senior Analyst-Organic (NSW)				
Senior Analyst-Volatile (NSW)				

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg to liable for consequential damages including, but not limited to, isst production arising for list interproduction arising for the interproduction arising for list interproduction arising for list interproduction arising for this report. This document shall not be reproduced except in full and relates only to the times tested. Unless indicated otherwise, the tests twen performed on the samples as received.

Appendix E Report Number 610.15583-R3 Page 1 of 1 PID CALIBRATION LOG

	PID CAL	IBRATION LOG	
PID MODEL: MiniRae Lite PGM73	500 (10.6eV lamp)	PID SERIAL NUMBER: 595-00	00501
Date:	460516	SLR Project Number:	610-13823.00001
Isobutylene Gas Lot No:	1583028		
Isobutylene Standard (ppm):	(070		
Fresh Air Cal (ppm):	σ.		
lsobutylene Cal (ppm):	100	~/	
SLR Consultant Signature:		//	
Date:	20106/2016	SLR Project Number:	610.15583.0020
Isobutylene Gas Lot No:	1583028		· · ·
Isobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	0.0		
lsobutylene Cal (ppm):	100.0		
SLR Consultant Signature:	Abo 2		
Date:		SLR Project Number:	
Isobutylene Gas Lot No:			
Isobutylene Standard (ppm):			
Fresh Air Cal (ppm):			
Isobutylene Cal (ppm):			
SLR Consultant Signature:			
Date:		SLR Project Number:	
Isobutylene Gas Lot No:			
Isobutylene Standard (ppm):			
Fresh Air Cal (ppm):			
Isobutylene Cal (ppm):			
SLR Consultant Signature:			<i>r</i> .

.